EKONOMI BIRU

Arah Kebijakan Pembangunan Sektor Kelautan dan Perikanan 2021 - 2024 Berbasis EKONOMI BIRU

ZI WBK? Yes, We CAN

LRMPHP siap meneruskan pembangunan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) yang telah dimulai sejak tahun 2021. ZI WBK? Yes, We CAN.

LRMPHP ber-ZONA INTEGRITAS

Loka Riset Mekanisasi Pengolahan Hasil Perikanan siap menerapkan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) 2021.

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Produk Hasil Rancang Bangun LRMPHP

Lebih dari 30 peralatan hasil rancang bangun LRMPHP telah dihasilkan selama kurun waktu 2012-2021

Kerjasama Riset

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Kanal Pengelolaan Informasi LRMPHP

Diagram pengelolaan kanal informasi LRMPHP

Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan
Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan

Selasa, 07 November 2017

Seminar Astechnova 2017- International Energy Conference


Astechnova 2017 International Energy Conference diselenggarakan di Eastparc Hotel pada tanggal 1 November 2017. Acara ini dihadiri oleh perwakilan dari Venezuela, Kuba, Nepal, dan akademisi serta peneliti dari berbagai instansi dan perguruan tinggi. Acara dibuka oleh Ketua Panitia Astechnova Rachmawan Budiarto, dalam sambutannya disampaikan bahwa Astechnova 2017 dapat menjadi forum diskusi dan publikasi para pakar dan peneliti di bidang energy, food, water nexus. Dalam seminar Astechnova 2017 ini ada lima pembicara kunci.

Keynote speech pertama oleh Prianti Gagarin Djatmiko Singgih selaku Director of Non Aligned Movement Centre for South-South Technical Cooperation (NAM CSSTC) dalam paparannya disampaikan bahwa Indonesia kaya akan sumber daya alam, namun hanya 3,25% yang baru digunakan. Dengan adanya forum seperti ini diharapkan akan terjadi sinergi antar sektor. Kata kunci dalam seminar ini yaitu nexus yang bertujuan untuk pemahaman lebih baik mengenai keterkaitan antara makanan, energi, dan air. Keterkaitan antar ketiga ini berkaitan dengan energy sustainability di seluruh dunia.

Keynote speech kedua oleh Gladys F. Urbaneja Duran selaku Duta Besar dari Republik Bolivarian, Venezuela. Dalam paparannya disampaikan beberapa isu mengenai makanan, energi, dan air yang merupakan isu yang sangat besar. Air memiliki karakteristik yang spesifik, yang bertindak sebagai pelindung bagi kehidupan di bumi.  Makanan, energi, dan air adalah trilogi yang mempengaruhi eksistensi mahluk hidup di bumi. Konstitusi Bolivarian tahun 1999 mengemukakan adalah hak dan kewajiban dari setiap manusia  untuk menikmati kehidupan di bumi namun juga harus menjaga bumi dari kontaminasi. Pada bulan Desember 2016, Republik Bolivarian dari Venezuela turut hadir dalam Konferensi Paris yang membahas mengenai mitigasi nasional. Venezuela memiliki banyak energi yang potensial, salah satunya yaitu banyak memiliki air terjun.

Pemaparan materi oleh keynote speech

Keynote speech ketiga oleh Sundar Bahadur Khadka selaku Federal Democratic Republic of Nepal dengan tema mengenai Solar Water Pumping. Pemaparan materi tersebut berkaitan dengan kondisi geografis Nepal yang mempunyai jumlah cadangan air yang cukup besar. Teknologi tersebut dipilih berdasarkan : availability, accesability, dan affordability.

Keynote speech keempat oleh Barbara Hernandez Martinez selaku perwakilan dari Republik Kuba. Dalam paparannya disampaikan bahwa AZCUBA menghasilkan 4 juta ton gula mentah, 400 ribu ton gula rafinasi, 180 juta alkohol, 1500 GWh listrik, dan produk samping lainnya. Sugar agro-industry adalah kombinasi natural dari makanan, energi, dan air yaitu : 1) ekstraksi dari jus/ madu digunakan untuk produksi alkohol, 2) sampahnya digunakan untuk produksi listrik, 3) listrik dijual ke public power system, 4) air sisa dari produksi alkohol digunakan untuk irigasi.

Keynote speech kelima dari Hiroshige Kikura (Tokyo Institute of Technology). Paparan yang disampaikan mengenai status di Fukushima, di Jepang terdapat 54 reaktor nuklir. Kondisi di Fukushima setelah terjadi gempa bumi besar dan tsunami menyisakan 3 reaktor yang beroperasi dari 6 reaktor yang ada. 

Plenary session ini ditutup dengan keynote speech dari Gea Oswah Fatah Parikesit, perwakilan dari Departemen Teknik Nuklir dan Teknik Fisika UGM. Selanjutnya acara dilanjutkan dengan scientific parallel session yang dibagi menjadi kelas-kelas seminar. Pada kesempatan ini perwakilan dari LRMPHP menyampaikan publikasi karya tulis ilmiah (KTI) yang tergabung pada bidangNew and Renewable Energy. Tema KTI yang disampaikan yaitu “Performance test of solar-powered ice maker : case study in South Lampung”. Tema  KTI ini merupakan hasil riset LRMPHP pada tahun 2016.

Penyampaian hasil riset oleh perwakilan dari LRMPHP

Senin, 30 Oktober 2017

Pembuatan Pupuk Organik Granul dari Tepung Rumput Laut Sargassum Sp.


Indonesia merupakan negara kepulauan yang memiliki keanekaragaman dan kelimpahan rumput laut yang sangat tinggi.  Produksi rumput laut Indonesia tercatat sebesar 3,082 juta ton pada tahun 2010, meningkat dibandingkan pada tahun 2009 yakni sebesar  2,574  juta  ton, sedangkan pada tahun 2014 mencapai 10,2 juta ton (Kementerian Kelautan dan Perikanan, 2015). Namun demikian, potensi yang ada tersebut belum dimanfaatkan secara maksimal.

Salah satu pemanfaatan rumput laut yang ada yaitu dapat digunakan sebagai bahan baku pupuk organik. Hal ini dikarenakan rumput laut kaya akan unsur hara dan zat pemacu tumbuh (ZPT) seperti auksin, sitokinin, giberelin, asam abisat, dan etilen. Unsur hara yang terdapat dalam rumput laut tersebut berasal dari air laut karena di dalam air laut banyak mengandung mineral seperti natrium, klor, bromida, yodium, fosfor, nitrogen, dan karbondioksida. Sargassum  Sp. merupakan jenis rumput laut yang memiliki kandungan zat  besi dengan bioavailabilitas yang  tinggi sehingga potensial untuk dijadikan bahan baku pupuk organik.

Pupuk organik memiliki beberapa macam bentuk seperti tablet, briket, curah, dan granul. Bentuk granul adalah yang paling diminati di pasaran karena bentuk granul lebih mudah diaplikasikan dan mudah meresap ke tanaman. Oleh karena itu, diperlukan proses granulasi partikel dimana partikel-partikel kecil disatukan untuk membentuk gumpalan (aglomerat) yang kuat secara fisik. Metode granulasi yang biasa digunakan dapat dibagi menjadi 5 metode, yaitu granulasi basah (wet granulation), granulasi dengan memberikan umpan (feeded granulation), granulasi dengan menggunakan bahan kimia (chemical granulation), pembentukan butiran (drop Formation atau Prilling) dan granulasi dengan pemadatan (Compaction granulation)

LRMPHP telah melakukan penelitian tentang pembuatan pupuk organik granul dari tepung rumput laut Sargassum sp. dengan granulator hasil rancang bangun LRMPHP (Gambar 1.). Penelitian ini bertujuan untuk mengetahui penambahan volume air yang tepat untuk menghasilkan rendemen pupuk organik granul tertinggi, dan mengetahui kualitas pupuk organik granul yang dihasilkan bila dibandingkan dengan pupuk organik granul komersial. Metode granulasi yang digunakan yaitu metode granulasi basah (wet granulation) dengan variasi rasio air dengan bahan (tepung Sargassum sp. dan kapur pertanian) yaitu 10 : 30, 11 : 30, 12 : 30, dan 13 : 30.

Hasil penelitian menunjukkan bahwa rendemen tertinggi pupuk granul (ukuran mesh 2 – 4 mm) sebesar 26,43% pada rasio air : bahan sebesar 12 : 30 (ml air/g bahan). Kadar karbon (C) organik pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk granul komersial berturut-turut 15,1 dan 20,2%. Rasio kabon/nitrogen (C/N) pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk granul komersial berturut-turut 18,41 dan 3,10%. Kadar air pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk granul komersial berturut-turut 19,47 dan 13,79%. Kadar timbal (Pb) pupuk granul dari tepung rumput laut Sargassum sp. kurang dari 0,04 ppm, sedangkan pupuk granul komersial sebesar 6,20 ppm. Sementara itu, kadar besi (Fe) total pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk komersial berturut-turut 8.031 dan 5.316 ppm. Kualitas pupuk organik granul yang berasal dari tepung rumput laut tersebut sebagian besar sudah memenuhi Permentan No.70/Permentan/SR.140 /10/2011. Keunggulan pupuk organik granul dari tepung rumput laut yaitu memiliki kandungan C/N ratio sebesar 18,41, ikutan logam berat yang sedikit, kadar airnya sebesar 19,47% dan kadar hara makronya (N + P2O5 + K2O) sebesar 4,72%.

Rabu, 18 Oktober 2017

Sistem Hibrid Pembangkit Listrik Tenaga Surya dengan PLN untuk Mesin Pembuat Es (Ice Maker)

Panel Surya untuk Ice Maker
Wilayah Indonesia terletak di daerah ekuator yang menyebabkan ketersediaan sinar matahari hampir sepanjang tahun di seluruh wilayah Indonesia kecuali pada musim hujan dan saat awan tebal menghalangi sinar matahari. Berdasarkan peta insolasi matahari, wilayah Indonesia memiliki potensi energi listrik yang berasal dari sinar matahari yaitu sebesar 4,5 kW/m2/hari. Hal ini sangat potensial untuk dimanfaatkan dalam memenuhi kebutuhan energi listrik, terutama untuk menangani keterbatasan listrik yang dihasilkan dari bahan bakar fosil.

Untuk mengantisipasi pertumbuhan kebutuhan energi listrik nasional dan keterbatasan ketersediaan sumber daya alam berbasis fosil maka diterbitkan Kebijakan Energi Nasional (KEN). Energi listrik terbarukan bisa dalam bentuk pembangkit listrik tenaga air (PLTA) dan mikrohidro (PLTM), pembangkit listrik tenaga surya (PLTS), pembangkit listrik tenaga angin (PLTB), pembangkit listrik biomassa, dan pembangkit listrik tenaga panas bumi (PLTPB). Potensi energi alternatif dan terbarukan tersebut cukup banyak namun belum dimanfaatkan secara optimal. Pada tahun 2025 diharapkan peran energi terbarukan akan mencapai sekitar 5% dari keseluruhan kapasitas pembangkitan listrik nasional. Peran PLTS diharapkan dapat menyumbang sebesar 800 MW dengan pertumbuhan sekitar 40 MW per tahun (Kumara, 2010).

Sebagai institusi riset, LRMPHP telah melakukan penelitian tentang perancangan sistem hibrid pembangkit listrik tenaga surya (PLTS) dengan PLN untuk mesin pembuat es (ice maker). Penelitian ini bertujuan untuk mengetahui beban daya PLTS yang dibutuhkan, kebutuhan dan spesifikasi panel surya (photo voltaic), baterai, alat pengatur pengisian baterai (charge controller) dan alat pengubah arus searah menjadi arus bolak-balik (inverter). Metode yang digunakan yaitu analisis atau perhitungan teorotis untuk menentukan beban energi yang diperlukan oleh ice maker, perhitungan daya dalam waktu pemakaian (Watt hour) yang mampu disediakan oleh PLTS hibrid, seleksi panel surya dan bahan lainnya yang akan digunakan berdasarkan material dan spesifikasinya. Kondisi awal (initial condition) yaitu ice maker dengan kapasitas sampai dengan 200 kg es/ hari dengan daya 760 watt. Ice maker yang digunakan merupakan jenis flakes ice maker, atau penghasil es berbentuk serpihan atau serut (flakes) yang diperuntukkan bagi pengepul atau pedagang ikan skala kecil dengan konsumsi daya listrik yang rendah.

Hasil penelitian menunjukkan bahwa untuk desain 8 jam operasional dengan penggunaan 50% PLTS sebesar 6080 Wh diperlukan spesifikasi dari komponen sebagai berikut : 1) Tujuh buah panel surya dengan kapasitas per buah sebesar 200 Wp, 2) Jenis panel surya yang digunakan yaitu polycristalline, 3) Kapasitas baterai 100 Ah, 48 volt, 4) Jenis aki yang digunakan yaitu aki kering, 5) Kapasitas arus charge controller lebih besar dari 15,83 A, 6) Tegangan keluaran pada charge controller sebesar 48 volt, 7) Jenis charge controller yang digunakan yaitu Pulse Width Modulator (PWM) Controller, dan 8) Spesifikasi inverter yang digunakan yaitu : tegangan masuk 48 volt DC, tegangan keluar 220 volt 1 phase, input lebih besar dari 15,83 A, gelombang output adalah gelombang sinus murni (jenis Pure Sine Wave Inverter).


Sumber : Prosiding KSNTTG LIPI 2016

Selasa, 03 Oktober 2017

Alat Impregnasi Vakum dan Uji Performansinya Pada Filet Ikan

Impregnasi vakum (vacuum impregnation) merupakan suatu metode dalam pengolahan pangan. Prinsip impregnasi adalah mengeluarkan sebagian atau keseluruhan udara maupun cairan dalam suatu bahan pangan kemudian menggantikannya dengan cairan atau larutan osmotik yang dikehendaki. Saat bahan pangan diberi perlakuan impregnasi vakum, cairan yang ada dalam bahan akan keluar karena kondisi tekanan lingkungan di bawah tekanan atmosfir, bagian-bagian yang kosong tersebut akan terisi kembali oleh cairan lain ketika tekanan dikembalikan pada tekanan atmosfir seperti semula atau lebih tinggi hingga tercapai keseimbangan antara cairan dalam bahan dan lingkungan.

Saat ini metode impregnasi vakum tengah popular sebagai metode untuk pengkayaan (enrichment) produk pangan. Penelitian membuktikan bahwa jaringan sel pada buah-buahan bisa diperkaya dengan berbagai bahan seperti probiotik, vitamin dan mineral tertentu untuk menambah manfaatnya. Metode impregnasi vakum juga dapat memperbaiki rasa, memperpanjang daya simpan dan memperbaiki warna pada produk pangan. Oleh karena itu metode impregnasi vakum berpeluang besar untuk memperbaiki kualitas produk olahan ikan. Hal ini karena daging ikan mempunyai sifat matrik sel yang longgar sehingga proses penggantian cairan dalam daging ikan dengan larutan osmotik akan lebih mudah.

Saat ini pengolahan ikan dengan cara penggaraman dan pengasapan masih membutuhkan waktu yang lama karena penyerapan garam maupun asap berjalan lambat sehingga beresiko terjadinya kemunduran mutu ikan. Untuk mengatasi hal tersebut maka diperlukan peralatan agar proses pengolahan ikan lebih efisien. LRMPHP telah melakukan penelitian perancangan alat impregnasi vakum dan uji performansinya pada filet ikan. Alat impregnasi vakum dirancang dengan dimensi panjang 800 mm, lebar 570 mm dan tinggi 1740 mm menggunakan bahan besi hollow 4x4 cm. Semua bagian yang bersentuhan langsung dengan larutan garam, asap cair dan sampel digunakan bahan stainless steel tipe 304. Bagian utama alat impregnasi vakum tekan antara lain tangki vakum, tangki penyimpanan, tangki pengaduk, sistem pemvakuman, pompa pendorong manual, sistem aliran bahan dan panel kontrol (Gambar 1.). Alat tersebut menghasilkan kekuatan vakum maksimal sebesar -76 cmHg dalam 9,15 menit sedangkan kekuatan tekan/impregnasinya maksimal 8 Bar dalam 38,70 menit.
Gambar 1. Alat impregnasi vakum

Uji performansi alat impregnasi dilakukan menggunakan larutan osmotik berupa larutan garam (1,74%) dan asap cair (1,5%) yang diintroduksi ke dalam filet ikan nila. Penggunaan larutan garam dan larutan asap cair dipilih dalam uji karena prinsipnya lebih sederhana. Hasil uji performansi menunjukkan bahwa alat impregnasi vakum tersebut mampu mengintroduksikan larutan garam dan asap cair ke dalam filet ikan nila dengan lebih efisien dibandingkan tanpa menggunakan alat (perendaman). Dalam waktu 10 menit vakum dan 15 menit impregnasi mampu mengintroduksikan larutan garam sebanyak 1,25% dan fenol 15,18 mg/kg, sedangkan dengan metode perendaman selama 60 menit hanya mampu menyerap 0,4% larutan garam dan 2,95 mg/kg fenol.

Rabu, 27 September 2017

Pembuatan Pupuk Granul Rumput Laut dengan Variasi Kecepatan dan Kemiringan Granulator

Kebutuhan pupuk di Indonesia cenderung mengalami peningkatan setiap tahunnya. Berbagai macam pupuk ada di pasaran baik pupuk kimia maupun organik. Saat ini pupuk organik lebih disukai dibanding dengan pupuk kimia. Hal ini terbukti dengan meningkatnya kebutuhan pupuk organik di masyarakat. Bahan organik dalam pupuk bermanfaat untuk proses penguatan akar dan peningkatan pertumbuhan tanaman sehingga dapat meningkatkan penyerapan nutrisi yang tersedia di dalam tanah.

Salah satu bahan organik yang dapat digunakan dalam pembuatan pupuk adalah rumput laut. Bahan ini kaya kandungan mineral, nutrien anorganik dan bahan organik seperti hormon pemacu tumbuh (sitokinin, auksin, dan giberelin). Pupuk organik memiliki beberapa macam bentuk seperti tablet, briket, curah, dan granul. Bentuk granul adalah yang paling diminati di pasaran karena bentuk granul lebih mudah diaplikasikan dan mudah meresap ke tanaman. 

Pembuatan pupuk granul berbahan dasar rumput laut telah dilakukan oleh LRMPHP. Rangkaian proses pembuatan pupuk granul rumput laut meliputi pengeringan, penepungan dan pembuatan granul. Peralatan yang digunakan terdiri dari alat penepung, granulator, conveyor dan pengayak (Gambar 1). Untuk menghasilkan pupuk granul yang baik, kecepatan dan kemiringan granulator merupakan salah satu faktor yang berpengaruh. LRMPHP telah melakukan penelitian pembuatan pupuk granul berbahan dasar rumput laut dengan variasi kecepatan dan kemiringan granulator.

Gambar 1. Alat pembuat pupuk granul (penepung, granulator, conveyor, dan pengayak)

Uji coba pembuatan pupuk granul rumput laut dilakukan dengan variasi kecepatan sebesar 40, 50 dan 60 rpm pada bagian piringan granulator dengan kemiringan 150°. Selain itu dilakukan uji coba dengan variasi kemiringan granulator sebesar 90°, 120°, dan 150° dengan kecepatan 60 rpm pada motor selama 1200 detik. Bahan baku yang digunakan berupa rumput laut jenis sargassum sp. yang dikombinasi dengan bahan organik. Hasil uji coba menunjukkan bahwa pada kecepatan 60 rpm dengan kemiringan 90° diperoleh hasil produksi terbaik dengan tingkat penerimaan produk sebanyak 36% (diameter granul 3-4 mm).

Selasa, 19 September 2017

Alat Pengaduk Mekanis untuk Pembuatan Dodol Rumput Laut

Dodol merupakan salah satu jenis makanan tradisional yang termasuk kelompok pangan semi basah. Umumnya dodol bersifat elastis, padat, dan mempunyai kisaran aw 0,60 - 0,90 serta kadar air 10 - 40%. Dodol terbuat dari bahan dasar yang mempunyai kandungan karbohidrat tinggi seperti tepung ketan. Selain tepung ketan, bahan dasar yang sering digunakan dalam pengolahan dodol adalah rumput laut.

Pengolahan rumput laut menjadi produk dodol telah banyak dilakukan oleh industri rumah tangga dengan menggunakan peralatan sederhana. Permasalahan yang sering dihadapi oleh para pengolah tersebut adalah proses pengadukan yang lama dan masih menggunakan tenaga manusia (manual). Selain itu, bila saat pengolahan menggunakan api terlalu besar atau pengadukan tidak merata maka sebagian adonan akan rusak atau hangus. Oleh karena itu, dalam pengolahan dodol rumput laut diperlukan peralatan untuk mempermudah pengolah dalam pembuatan produk tersebut dengan tidak mengurangi kualitas yang dihasilkan.

Beberapa penelitian telah dilakukan untuk mendapatkan alat pengolah dodol yang efektif. Handoko (1992) merancang alat pengaduk dodol mekanis namun belum menggunakan tangki double jacket sehingga belum bisa mengurangi tingkat kerusakan (hangus) produk. Ardiansyah et al (2013) dan Nugroho et al (2014) melakukan penelitian perancangan dan pembuatan alat pengaduk adonan dodol dengan kecepatan konstan dan torsi adaptif serta pengaturan kecepatan motor DC namun belum diperoleh informasi penggunaannya pada dodol dari rumput laut dan kualitas dodol yang dihasilkan.

LRMPHP telah mengembangkan alat pengaduk mekanis yang didesain menggunakan double layer pada tangki pemasakan dan pengaduk konstan, sehingga diharapkan mampu mempermudah pengadukan saat pengolahan. Metode yang digunakan adalah analisis teknis, perancangan desain, pabrikasi dan pengujian. Hasil rancang bangun mesin pengaduk dodol mekanis tampak pada Gambar 1. Peralatan dibuat menggunakan  bahan  besi hollow 4x4 dan SS 304 dengan dimensi 760 mm x 720 mm x 1410 mm (PxLxT). Tabung wadah bahan baku menggunakan sistem double jacket, kecepatan pengaduk konstan 16 rpm dengan daya 2 HP. 

Gambar 1. Hasil rancang bangun alat pengaduk mekanis

Hasil pengujian alat pengaduk mekanis menunjukkan bahwa alat pengaduk mekanis ini mampu menghasilkan produk dodol rumput laut dengan kapasitas optimal 50 kg bahan baku (E. cottonii), rendemen 73.77%, tingkat kerusakan produk akibat hangus 0.06%, kapasitas efektif alat 12.5 kg/jam dan kebutuhan bahan bakar gas selama pemasakan 4 jam adalah 1.78 kg. Sedangkan kualitas dodol yang di hasilkan memiliki tekstur 8.62 (g/mm2), kadar air 68.80 (%) dan kadar abu 2.80 (%).

Sumber : Semnaskan Hasil Penelitian UGM 2015

Kamis, 14 September 2017

Aplikasi Gum Arab dan Dekstrin Sebagai Bahan Pengikat Protein Ekstrak Kepala Udang


Udang merupakan komoditas perikanan yang diandalkan pemerintah untuk menghasilkan devisa negara. Ekspor udang pada tahun 2011 mencapai 153.000 ton, hampir 90% udang tersebut diekspor dalam bentuk beku, tanpa kulit dan kepala. Oleh karena itu jumlah hasil samping (bagian yang terbuang) dari industri pembekuan udang tersebut cukup besar. Hasil samping dari pengolahan udang beku berupa kepala udang yang tidak digunakan mencapai 30–40%. Beberapa jenis pemanfaatan kepala udang yang biasa dilakukan antara lain sebagai pakan ternak, petis, silase dan terasi, namun cara-cara tersebut belum bisa meningkatkan nilai ekonomisnya.

Kepala udang kaya akan protein yang dapat digunakan sebagai bahan fortifikan pada makanan dan minuman. Protein berperan penting dalam tubuh manusia untuk menjaga kekebalan tubuh, membantu dalam proses penyembuhan luka, regenerasi sel hingga mengatur kerja hormon dan enzim dalam tubuh. Hingga saat ini pemanfaatan kepala udang sebagai sumber protein untuk pangan sebagian besar dilakukan dengan proses hidrolisis secara enzimatis, namun metode tersebut memerlukan biaya yang cukup besar dan ketelitian yang tinggi. Pemanfaatan kepala udang sebagai sumber protein tanpa proses enzimatis dapat dilakukan menggunakan proses asam basa dengan metode isoelektrik maupun dengan metode mekanis. Ekstraksi protein dari kepala udang dengan metode mekanis dapat dimodifikasi dengan tujuan mendapatkan jenis-jenis protein yang larut dalam air (protein polar). Hasil ekstraksi (ekstrak) kepala udang bisa dalam bentuk bubuk atau cairan.

Untuk suplementasi protein, ekstrak dalam bentuk bubuk memiliki beberapa kelebihan dibandingkan dalam bentuk cairan karena lebih mudah disimpan dan tidak mudah terkontaminasi. Bubuk ekstrak kepala udang juga mempunyai daya larut yang tinggi sehingga mudah ditambahkan ke dalam makanan atau minuman yang akan disuplementasi. Dalam pembuatan bubuk dari suatu cairan dibutuhkan bahan pengisi yang berfungsi juga sebagai bahan pengikat yang disebut binding agent atau binder.

Berdasarkan beberapa penelitian terdahulu diketahui bahwa gum arab dapat diaplikasikan sebagai binding agent bahan pangan maupun bahan obat. Selain itu gum arab bersifat sebagai emulsifier sehingga bahan yang telah diproses dengan penambahan gum arab akan mudah dilarutkan dalam air maupun minyak. Sementara itu dekstrin dapat digunakan sebagai bahan enkapsulasi senyawa volatile dan minyak, sehingga dapat melindungi senyawa yang peka terhadap oksidasi atau panas, karena molekul dari dekstrin stabil terhadap panas dan oksidasi. Oleh karena itu, penggunaan gum arab dan dekstrin pada ekstrak kepala udang diharapkan mampu menjadi bahan pengikat protein yang baik dan melindunginya dari proses panas saat pengeringan maupun proses berikutnya. 

LRMPHP telah melakukan penelitian tentang gum arab dan dekstrin sebagai bahan pengikat protein terlarut ekstrak kepala udang, yang nantinya bisa digunakan sebagai bahan dasar suplementasi protein. Tujuan penelitian ini adalah untuk mendapatkan proporsi terbaik dari penambahan gum arab dan dekstrin pada pembuatan bubuk protein sebagai bahan suplementasi nutrisi. Gum arab dan dekstrin yang ditambahkan sebanyak 8% (b/v), dengan empat perlakuan proporsi yang berbeda yaitu 1:0,5; 1:1,75; 1:3; dan 1:4,25. Parameter yang diamati untuk mengetahui sifat fisika dan kimia hasil ekstraksi meliputi kadar nitrogen terlarut, kadar nitrogen amino, kadar nitrogen non protein, kadar protein kasar, kadar air, kelarutan, dan rendemen. Hasil penelitian menunjukkan bahwa perlakuan terbaik adalah penambahan gum arab dan dekstrin dengan perbandingan 1:0,5. Produk memiliki kadar nitrogen terlarut 0,55%, kadar nitrogen amino 2,35%, kadar nitrogen non protein 2,62%, kadar protein kasar 33,20%, kadar air 5,67%, kelarutan 99,15% dan rendemen 5,04%. Produk ini memenuhi kebutuhan jenis asam amino yang disyaratkan ada pada pangan anak usia 10–14 tahun yang di tetapkan oleh FAO. Produk ini juga memiliki sifat kelarutan yang bagus sebagai bubuk karena kelarutannya diatas 95%.

Sumber : Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan

Senin, 28 Agustus 2017

Mesin Pencacah dan Penggiling Rumput Laut Sistem Berkelanjutan

Rumput laut merupakan salah satu produk unggulan kelautan di Indonesia. Pengembangan industri rumput laut di Indonesia memiliki prospek yang baik. Hal ini disebabkan teknik pembudidayaan rumput laut yang relatif mudah dan permintaan terhadap rumput laut serta produk olahannya cukup banyak. Dengan meningkatnya permintaan rumput laut tersebut maka dibutuhkan proses pengolahan yang optimal. Salah satu tahapan pengolahan rumput laut adalah dengan menghancurkan dan menghaluskan rumput laut sehingga mempermudah proses pengolahan lebih lanjut. Peralatan yang digunakan dalam proses tersebut adalah alat pencacah dan penggiling.

Saat ini alat pencacah dan penggiling rumput laut biasanya dijual terpisah di pasaran, sehingga untuk mengolah rumput laut mulai proses pencacahan hingga penggilingan memerlukan bantuan operator. Hal ini menyebabkan waktu pengolahan rumput laut menjadi lebih lama. Untuk itu diperlukan mesin pencacah dan penggiling yang memiliki sistem berkelanjutan sehingga menjadi lebih efisien .

LRMPHP telah melakukan penelitian rancang bangun mesin pencacah dan penggiling rumput laut sistem berkelanjutan. Hasil penelitian ini telah dipublikasikan dalam Seminar Nasional Tahunan XIII Hasil Penelitian Perikanan dan Kelautan, 2016 di UGM. Rancangan mesin pencacah dan penggiling rumput laut sistem berkelanjutan  (Gambar 1.) memiliki konsep pemrosesan yaitu rumput laut dimasukkan melalui hopper lalu dicacah menggunakan pisau dan hasil cacahannya dikecilkan menggunakan penggiling. 

  
Gambar 1. Mesin pencacah dan penggiling rumput laut sistem berkelanjutan rancangan LRMPHP
Adapun spesifikasi alat rancangan LRMPHP dan hasil uji performansinya dapat dilihat pada Tabel 1 dan 2.
Tabel 1. Spesifikasi alat pencacah rumput laut sistem berkelanjutan
Mesin Pencacah dan Penggiling
Sistem
Cacah dan giling, continue
Spesifikasi
PxLxT : 90 x 80 x 125 (cm)

Motor Pencacah : 5.3 HP, 3 Phase

Motor Penggiling : 5.3 HP, 3 Phase
  
Tabel 2. Hasil uji mesin pencacah dan penggiling rumput laut sistem berkelanjutan

No.
Rumput laut
Berat awal (kg)
Waktu total mencacah (menit)
Berat akhir tercacah (kg)
1
Sargassum
29.94
39
22.42
2
Sargassum
33.28
40
26.12
3
E.cottonii
31.14
10
30.78
4
E.cottonii
31.74
11
29.07

Berdasarkan hasil uji performansi tersebut maka mesin pencacah dan penggiling rumput laut sistem berkelanjutan rancangan LRMPHP berjalan dengan baik. Kapasitas produksinya sebanyak 48 kg/jam untuk rumput laut jenis Sargassum dan  180 kg/jam untuk E.cottonii

Rabu, 23 Agustus 2017

Mesin Pencuci Rumput Laut Sistem Berkelanjutan

Kebutuhan rumput laut diperkirakan akan terus meningkat seiring dengan meningkatnya kebutuhan untuk konsumsi langsung maupun kebutuhan industri (makanan, farmasi, kosmetik, dan lain-lain). Selama ini pembudidaya rumput laut umumnya hanya menjual rumput laut dalam bentuk mentah (kering) dan belum diolah dengan baik. Di pasar internasional, rumput laut dari Indonesia masih dihargai rendah karena mutunya belum baik. Salah satu penyebab rendahnya kualitas rumput laut Indonesia tersebut karena kurangnya teknologi penanganan pasca panen. Jika teknologi pasca panen rumput laut dapat dikembangkan dan diterapkan dengan baik, maka agroindustri yang bertujuan meningkatkan nilai tambah, menambah lapangan kerja dan mengurangi impor produk jadi rumput laut dapat tercapai.

Secara umum, kualitas rumput laut harus memenuhi Standar Nasional Indonesia (SNI nomor 2690 : 2015). Salah satu parameter untuk mengetahui kualitas rumput laut adalah tingkat kebersihan rumput laut kering yang ditunjukkan dengan nilai CAW (Clean Anhydrous Weed). CAW yaitu persentase berat sampel rumput laut kering bersih setelah dicuci, dipisahkan dari pengotor lain dan dikeringkan dalam oven pada suhu 700C sampai berat konstan dibandingkan dengan bobot rumput laut awal.

Salah satu tahapan penanganan pasca panen rumput laut adalah pencucian rumput laut. Selama ini pencucian rumput laut masih dilakukan secara konvensional dengan cara merendam rumput laut dalam air laut karena akan lebih mudah menghilangkan kerang, pasir dan kotoran lainnya. Selain itu, pencucian rumput laut juga bisa dilakukan dengan merendam rumput laut kedalam air bersih dengan beberapa kali pengadukan. Namun, proses tersebut membutuhkan waktu yang lama sehingga kapasitas produksinya menjadi kecil. Oleh karena itu diperlukan mesin atau peralatan yang dapat mempermudah pencucian rumput laut.

LRMPHP telah melakukan penelitian rancang bangun mesin pencuci rumput laut sistem berkelanjutan. Penelitian mencakup tahap perancangan/desain, perakitan mesin, uji kinerja mesin, serta analisis produk yang dihasilkan. Desain alat pencuci rumput laut dirancang untuk pencucian dengan sistem berkelanjutan, yaitu alat dapat digunakan secara terus menerus tanpa ada proses muat dan bongkar bahan yang dicuci. Sistem kerja mesin dibuat sesederhana mungkin agar mudah dioperasikan oleh operator di unit pengolahan yang pada umumnya memiliki keahlian yang terbatas.

Mesin pencuci rumput laut hasil rancang bangun LRMPHP dan spesifikasi teknisnya disajikan pada gambar 1 dan tabel 1 berikut:

 
Gambar 1. Mesin Pencuci Rumput Laut Sistem Berkelanjutan

     Tabel 1. Spesifikasi Teknis Alat Pencuci Rumput Laut

Pada uji kapasitas mesin pencuci rumput laut sistem berkelanjutan terhadap rumput laut Sargassum sp. dan E. Cottonii diperoleh hasil 53 kg/jam dan 99 kg/jam. Hasil pencucian terhadap dua jenis rumput tersebut menunjukkan kapasitas pencucian yang berbeda. Hal ini disebabkan karena sifat fisik dan morfologi kedua rumput laut tersebut berbeda. Hasil analisa CAW terhadap rumput laut sargassum sp. diperoleh nilai 71,76 %, artinya tingkat kemurniannya sebesar 71,76 %. Berdasarkan standar SNI 2690 : 2015 yang mensyaratkan kadar CAW rumput laut Sargassum sp. minimal 50%, maka rumput laut tersebut telah memenuhi standar. Secara umum mesin pencuci rumput laut sistem berkelanjutan dapat bekerja dengan baik sehingga dapat mempermudah pencucian rumput laut.

Sumber : Prosiding Semnaskan UGM

Jumat, 18 Agustus 2017

Pembuatan Pupuk Granul Rumput Laut Menggunakan Prototipe Granulator Vertikal dengan Variasi Kecepatan Putaran Chopper

Pemakaian pupuk kimia untuk pertanian yang melebihi ketentuan dosis dapat mengakibatkan menurunnya kualitas lahan dan berimbas pada penurunan hasil panen. Oleh karena itu para petani mulai beralih menggunakan pupuk organik untuk merawat/menjaga tingkat kesuburan tanah. Salah satu bahan yang potensial digunakan dalam pembuatan pupuk organik adalah rumput laut. Bahan ini kaya kandungan mineral, nutrien anorganik dan bahan organik seperti hormon pemacu tumbuh (sitokinin, auksin, dan giberelin).

Pupuk organik memiliki beberapa macam bentuk seperti tablet, briket, curah, dan granul. Bentuk granul adalah yang paling diminati di pasaran karena granul lebih mudah ditaburkan/diaplikasikan dan mudah meresap ke tanaman. Massa granul lebih ringan daripada bentuk curah, sehingga memudahkan dan mengurangi biaya tranportasi. Pada proses granulasi, partikel-partikel kecil disatukan dan dipadatkan untuk membentuk gumpalan yang kuat secara fisik dengan struktur permanen dimana partikel aslinya masih bisa dibedakan. Cara yang paling sederhana dalam pembuatan granul adalah dengan menggunakan nampan. Metode ini biasanya digunakan untuk membuat granul skala kecil. Dalam perkembangannya terdapat beberapa tipe granulator yang umum digunakan di industri yaitu: fluidized bed granulator, high shear granulator, disc granulator (pan granulator) dan drum granulator.

LRMPHP telah mengembangkan granulator dengan mengadopsi granulator tipe vertical high shear. Granulator tipe ini menggunakan impeller yang berfungsi sebagai pengaduk untuk membentuk gumpalan basah dan chopper yang berfungsi sebagai pemecah gumpalan sehingga menghasilkan granul dengan densitas tinggi. Impeller berputar pada kecepatan rendah sampai tinggi untuk menciptakan kondisi pengadukan yang diharapkan. Setelah tepung (powder) tercampur rata maka ditambahkan air untuk membasahi adonan sehingga saling terikat dan membentuk gumpalan basah (metode granulasi basah).  

Granulator yang dikembangkan LRMPHP tersebut, pada proses pemadatan granul terdapat 2 drum yang berfungsi untuk memadatkan granul yang sudah terbentuk pada drum 1. Kecepatan putar pada chopper merupakan salah satu faktor utama dalam pembentukan granul karena berpengaruh terhadap rendemen granul. Oleh karena itu kecepatan putar chopper menjadi hal penting dalam pembuatan granulator. Uji coba granulasi dilakukan menggunakan model alat granulator vertikal rancangan LRMPHP (Gambar 1 dan 2).
Gambar 1. Alat uji granulator rancangan LRMPHP
Prinsip kerja alat tersebut dengan memanfaatkan impeller sebagai pengaduk dan chopper sebagai pemecah untuk membentuk campuran tepung menjadi bentuk granul. Pada drum 1 terdapat impeller yang berputar dengan kecepatan tertentu. Dengan tambahan air dan diaduk menggunakan impeller dalam waktu tertentu maka adonan akan membentuk gumpalan basah. Gumpalan basah tersebut akan dipecah oleh chopper yang berputar dengan kecepatan tertentu sehingga membentuk butiran (granul). Kombinasi dan variasi kecepatan putar antara impeller dan chopper akan menghasilkan ukuran granul yang bervariasi. Pada drum 2 dan 3 terdapat piringan yang berputar dengan kecepatan tertentu. Piringan yang berputar tersebut mengakibatkan gaya sentrifugal sehingga granul yang sudah terbentuk akan berputar-putar dan menjadi semakin padat.  
Gambar 2. Ilustrasi drum 1 alat uji granulator LRMPHP
Hasil uji coba pembuatan pupuk granul rumput laut dengan variasi kecepatan putar chopper ditunjukkan pada gambar 3. Perbandingan nilai rendemen pada granul ukuran kecil (D < 4 mm), granul ukuran sedang (3 – 4 mm)  dan granul ukuran besar (D > 4 mm) pada pengaturan kecepatan chopper 1070 : 896 rpm, berturut turut yaitu sebesar 93,38 % : 98,95 %, 61,76 % : 23,04 %, 15,46 % : 33,22 % dan 16,17 % : 42,69 %. Hasil analisis statistik data dengan tingkat kepercayaan 95% menunjukkan bahwa kecepatan putar chopper tidak berpengaruh signifikan terhadap rendemen granul total tetapi berpengaruh cukup signifikan terhadap rendemen pada berbagai ukuran granul yang dihasilkan. Dengan kecepatan putar chopper sebesar 1070 rpm menghasilkan lebih banyak granul dengan ukuran kecil, sedangkan pada 896 rpm menghasilkan lebih banyak granul berukuran sedang sampai besar dibandingkan dengan granul ukuran kecil. Oleh karena itu, kombinasi antara kecepatan putar impeller dan chopper perlu diperhatikan untuk memperoleh ukuran granul yang diharapkan. 
Gambar 3. Granul yang dihasilkan pada dua variasi putaran; a). Hasil granul pada putaran 896 rpm;
b). Hasil granul pada putaran 1070 rpm


Sumber : Prosiding Semnaskan UGM

Senin, 31 Juli 2017

Penerapan Model Neural Network Pattern Recognition untuk Prediksi Kesegaran Ikan Tuna

Penentuan kesegaran ikan menjadi langkah penting dalam pengkonsumsian ikan. Perubahan mayor yang dijadikan patokan kesegaran ikan adalah warna, bau dan tekstur. Mata ikan akan berubah semakin cekung dan keruh pada ikan yang busuk selanjutnya mengeluarkan bau dan tekstur daging menjadi lunak (SNI). Perubahan fisik secara visual pada kebusukan ikan mampu diterjemahkan menjadi deretan angka dengan bantuan pengolahan citra digital. Penerapan pengolahan citra untuk menentukan kesegaran ikan dan bahan makanan lain telah dilakukan oleh beberapa peneliti. Dutta et al (2016) melaporkan bahwa penentuan tingkat kesegaran ikan dapat dilakukan menggunakan pengolahan citra insang ikan. Menesatti et al (2010) menyebutkan bahwa citra digital ikan berbasis kamera hyperspektral bisa menjadi dasar penentu kesegaran ikan. Kelemahan dua penelitian tersebut adalah bersifat destruktif karena perlu pemotongan operculum ikan untuk memperoleh citra insang yang baik dan diperlukan kamera hyperspektral yang harganya cukup mahal. Oleh karena itu, penelitian terkait penerapan model neural network pattern regognition yang bersifat nondestruktif dengan menggunakan kamera biasa masih perlu dikembangkan.

Neural Network atau Jaringan Syaraf Tiruan (JST) merupakan sebuah metode pengenalan pola, prediksi, klasifikasi dan pendekatan fungsi yang meniru arsitektur kerja otak. JST memiliki tiga lapisan yaitu lapisan input, lapisan tersembunyi dan lapisan output. Salah satu algoritma pada JST adalah backpropagation yang mempunyai kemampuan untuk melakukan dua tahap perhitungan yaitu perhitungan maju dan turun. Perhitungan maju untuk menghitung eror antara output dan target, sedangkan perhitungan mundur sebagai penghitungan balik eror untuk memperbaiki bobot pada semua neuron yang ada. Penerapan JST dengan algoritma backpropagation dalam pengambilan keputusan telah dilaporkan beberapa peneliti. Kusmaryanto, S (2014) menggunakan JST Backpropagation untuk pengenalan wajah. Dewi et al (2009) mampu menerapkan JST untuk memprediksi kelulusan mahasiswa. Lebih jauh lagi di bidang perikanan, Dowlati et al (2009) menggunakan metode regresi dan neural network untuk memprediksi tingkat kesegaran ikan bawal.

Tahapan dalam sebuah JST pattern recognition adalah akuisisi data, preprocessing, ekstraksi ciri dan pengenalan data (Putra, D. 2010). JST dikembangkan dari data citra Red Green Blue (RGB)  yang diukur menggunakan computer vision system. Sebuah citra dalam model Red Green Blue (RGB) memiliki tiga komponen warna utama yaitu merah, hijau dan biru dengan rentang nilai setiap komponen utama antara 0-225. Warna selain komponen utama adalah hasil percampuran komponen warna utama dengan nilai tertentu. Penggunaan  komponen RGB dalam bentuk data statistik yang digunakan sebagai input pada jaringan pengambil keputusan telah dilaporkan. Hariyanto (2009) menggunakan metode pengubahan komponen RGB pada gelang resistor untuk mengetahui nilai resistansinya. Lebih lanjut dibidang perikanan Issac et al (2017) mampu menggunakan data masukan nilai RGB citra insang sebagai penentu tingkat kesegaran ikan.

Berdasarkan beberapa literatur di atas, penerapan JST pattern recognition di bidang perikanan masih belum digunakan secara luas, padahal metode image processing dengan JST sebagai pengambil keputusan yang akurat. Oleh karena itu, LRMPHP telah melakukan penelitian untuk mengetahui kemampuan JST dalam memprediksi kesegaran ikan tuna (Thunnus sp.). Hasil penelitian tersebut telah dipublikasikan dalam Seminar Nasional Tahunan XIV Hasil Penelitian Perikanan dan Kelautan (Semnaskan-UGM) 22 Juli di Yogyakarta.

Rangkaian penelitian dimulai dengan pengambilan data citra mata ikan menggunakan kamera logitech 8 megapiksel di dalam kotak khusus berukuran x 55 x 12 cm yang telah dilengkapi dengan lampu LED pada empat titik. Citra mata ikan yang diperoleh selanjutnya melewati dua tahapan pengolahan citra menggunakan software matlab 2014a, yaitu preprocessing dan ekstraksi rata rata nilai RGB citra mata ikan. Berikut diagram proses penelitian (Gambar 1.) dan alur preprocessing citra mata ikan (Gambar 2.).
Gambar 1. Diagram proses penelitian

Gambar 2. Alur preprocessing citra mata ikan
    Hasil preprocessing citra mata ikan terlihat pada Tabel 1.

Berdasarkan olah data yang dilakukan maka diperolah nilai akurasi, sensitivitas dan spesivitas pengujian masing-masing sebesar 86, 95 dan 71 %. Nilai AUC yang diperoleh sebesar 0,834, sehingga dapat dsimpulkan bahwa metode klasifikasi kesegaran ikan berdasarkan nilai rata rata RGB citra mata ikan tergolong baik.