Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan Nomor 10/2017

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Produk Hasil Rancang Bangun LRMPHP

Lebih dari 25 peralatan hasil rancang bangun LRMPHP telah dihasilkan selama kurun waktu 2012-2017

Kerjasama Riset

Bahu membahu untuk kemajuan IPTEK dengan berlandaskan 3 pilar misi KKP: kedaulatan (sovereignty), keberlanjutan (sustainability), dan kesejahteraan (prosperity)

Sumber Daya Manusia

LRMPHP saat ini didukung oleh tenaga peneliti sebanyak 12 orang dengan latar pendidikan teknologi pangan dan engineering, 5 orang teknisi litkayasa, dan beberapa staf administrasi

Kanal Pengelolaan Informasi LRMPHP

Diagram pengelolaan kanal informasi LRMPHP

Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan
Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan

Selasa, 04 September 2018

Mesin Pencuci Rumput Laut Sistem Berkelanjutan

Kebutuhan rumput laut diperkirakan akan terus meningkat seiring dengan meningkatnya kebutuhan untuk konsumsi langsung maupun kebutuhan industri (makanan, farmasi, kosmetik, dan lain-lain). Selama ini pembudidaya rumput laut umumnya hanya menjual rumput laut dalam bentuk mentah (kering) dan belum diolah dengan baik. Di pasar internasional, rumput laut dari Indonesia masih dihargai rendah karena mutunya belum baik. Salah satu penyebab rendahnya kualitas rumput laut Indonesia tersebut karena kurangnya teknologi penanganan pasca panen. Jika teknologi pasca panen rumput laut dapat dikembangkan dan diterapkan dengan baik, maka agroindustri yang bertujuan meningkatkan nilai tambah, menambah lapangan kerja dan mengurangi impor produk jadi rumput laut dapat tercapai.

Secara umum, kualitas rumput laut harus memenuhi Standar Nasional Indonesia (SNI nomor 2690 : 2015). Salah satu parameter untuk mengetahui kualitas rumput laut adalah tingkat kebersihan rumput laut kering yang ditunjukkan dengan nilai CAW (Clean Anhydrous Weed). CAW yaitu persentase berat sampel rumput laut kering bersih setelah dicuci, dipisahkan dari pengotor lain dan dikeringkan dalam oven pada suhu 700C sampai berat konstan dibandingkan dengan bobot rumput laut awal.

Salah satu tahapan penanganan pasca panen rumput laut adalah pencucian rumput laut. Selama ini pencucian rumput laut masih dilakukan secara konvensional dengan cara merendam rumput laut dalam air laut karena akan lebih mudah menghilangkan kerang, pasir dan kotoran lainnya. Selain itu, pencucian rumput laut juga bisa dilakukan dengan merendam rumput laut kedalam air bersih dengan beberapa kali pengadukan. Namun, proses tersebut membutuhkan waktu yang lama sehingga kapasitas produksinya menjadi kecil. Oleh karena itu diperlukan mesin atau peralatan yang dapat mempermudah pencucian rumput laut.

LRMPHP telah melakukan penelitian rancang bangun mesin pencuci rumput laut sistem berkelanjutan. Penelitian mencakup tahap perancangan/desain, perakitan mesin, uji kinerja mesin, serta analisis produk yang dihasilkan. Desain alat pencuci rumput laut dirancang untuk pencucian dengan sistem berkelanjutan, yaitu alat dapat digunakan secara terus menerus tanpa ada proses muat dan bongkar bahan yang dicuci. Sistem kerja mesin dibuat sesederhana mungkin agar mudah dioperasikan oleh operator di unit pengolahan yang pada umumnya memiliki keahlian yang terbatas.

Mesin pencuci rumput laut hasil rancang bangun LRMPHP dan spesifikasi teknisnya disajikan pada gambar 1 dan tabel 1 berikut:

 
Gambar 1. Mesin Pencuci Rumput Laut Sistem Berkelanjutan

     Tabel 1. Spesifikasi Teknis Alat Pencuci Rumput Laut

Pada uji kapasitas mesin pencuci rumput laut sistem berkelanjutan terhadap rumput laut Sargassum sp. dan E. Cottonii diperoleh hasil 53 kg/jam dan 99 kg/jam. Hasil pencucian terhadap dua jenis rumput tersebut menunjukkan kapasitas pencucian yang berbeda. Hal ini disebabkan karena sifat fisik dan morfologi kedua rumput laut tersebut berbeda. Hasil analisa CAW terhadap rumput laut sargassum sp. diperoleh nilai 71,76 %, artinya tingkat kemurniannya sebesar 71,76 %. Berdasarkan standar SNI 2690 : 2015 yang mensyaratkan kadar CAW rumput laut Sargassum sp. minimal 50%, maka rumput laut tersebut telah memenuhi standar. Secara umum mesin pencuci rumput laut sistem berkelanjutan dapat bekerja dengan baik sehingga dapat mempermudah pencucian rumput laut.

Sumber : Prosiding Semnaskan UGM

Senin, 27 Agustus 2018

Pembuatan Pupuk Organik Granul dari Tepung Rumput Laut Sargassum Sp.

Indonesia merupakan negara kepulauan yang memiliki keanekaragaman dan kelimpahan rumput laut yang sangat tinggi.  Produksi rumput laut Indonesia tercatat sebesar 3,082 juta ton pada tahun 2010, meningkat dibandingkan pada tahun 2009 yakni sebesar  2,574  juta  ton, sedangkan pada tahun 2014 mencapai 10,2 juta ton (Kementerian Kelautan dan Perikanan, 2015). Namun demikian, potensi yang ada tersebut belum dimanfaatkan secara maksimal.

Salah satu pemanfaatan rumput laut yang ada yaitu dapat digunakan sebagai bahan baku pupuk organik. Hal ini dikarenakan rumput laut kaya akan unsur hara dan zat pemacu tumbuh (ZPT) seperti auksin, sitokinin, giberelin, asam abisat, dan etilen. Unsur hara yang terdapat dalam rumput laut tersebut berasal dari air laut karena di dalam air laut banyak mengandung mineral seperti natrium, klor, bromida, yodium, fosfor, nitrogen, dan karbondioksida. Sargassum  Sp. merupakan jenis rumput laut yang memiliki kandungan zat  besi dengan bioavailabilitas yang  tinggi sehingga potensial untuk dijadikan bahan baku pupuk organik.

Pupuk organik memiliki beberapa macam bentuk seperti tablet, briket, curah, dan granul. Bentuk granul adalah yang paling diminati di pasaran karena bentuk granul lebih mudah diaplikasikan dan mudah meresap ke tanaman. Oleh karena itu, diperlukan proses granulasi partikel dimana partikel-partikel kecil disatukan untuk membentuk gumpalan (aglomerat) yang kuat secara fisik. Metode granulasi yang biasa digunakan dapat dibagi menjadi 5 metode, yaitu granulasi basah (wet granulation)granulasi dengan memberikan umpan (feeded granulation), granulasi dengan menggunakan bahan kimia (chemical granulation)pembentukan butiran (drop Formation atau Prilling) dan granulasi dengan pemadatan (Compaction granulation)

LRMPHP telah melakukan penelitian tentang pembuatan pupuk organik granul dari tepung rumput laut Sargassum sp. dengan granulator hasil rancang bangun LRMPHP (Gambar 1.). Penelitian ini bertujuan untuk mengetahui penambahan volume air yang tepat untuk menghasilkan rendemen pupuk organik granul tertinggi, dan mengetahui kualitas pupuk organik granul yang dihasilkan bila dibandingkan dengan pupuk organik granul komersial. Metode granulasi yang digunakan yaitu metode granulasi basah (wet granulation) dengan variasi rasio air dengan bahan (tepung Sargassum sp. dan kapur pertanian) yaitu 10 : 30, 11 : 30, 12 : 30, dan 13 : 30.

Hasil penelitian menunjukkan bahwa rendemen tertinggi pupuk granul (ukuran mesh 2 – 4 mm) sebesar 26,43% pada rasio air : bahan sebesar 12 : 30 (ml air/g bahan). Kadar karbon (C) organik pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk granul komersial berturut-turut 15,1 dan 20,2%. Rasio kabon/nitrogen (C/N) pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk granul komersial berturut-turut 18,41 dan 3,10%. Kadar air pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk granul komersial berturut-turut 19,47 dan 13,79%. Kadar timbal (Pb) pupuk granul dari tepung rumput laut Sargassum sp. kurang dari 0,04 ppm, sedangkan pupuk granul komersial sebesar 6,20 ppm. Sementara itu, kadar besi (Fetotal pupuk granul dari tepung rumput laut Sargassum sp. dan pupuk komersial berturut-turut 8.031 dan 5.316 ppm. Kualitas pupuk organik granul yang berasal dari tepung rumput laut tersebut sebagian besar sudah memenuhi Permentan No.70/Permentan/SR.140 /10/2011. Keunggulan pupuk organik granul dari tepung rumput laut yaitu memiliki kandungan C/N ratio sebesar 18,41, ikutan logam berat yang sedikit, kadar airnya sebesar 19,47% dan kadar hara makronya (N + P2O5 + K2O) sebesar 4,72%.

Kamis, 16 Agustus 2018

Sistem Hibrid Pembangkit Listrik Tenaga Surya dengan PLN untuk Mesin Pembuat Es (Ice Maker)

Panel Surya untuk Ice Maker
Wilayah Indonesia terletak di daerah ekuator yang menyebabkan ketersediaan sinar matahari hampir sepanjang tahun di seluruh wilayah Indonesia kecuali pada musim hujan dan saat awan tebal menghalangi sinar matahari. Berdasarkan peta insolasi matahari, wilayah Indonesia memiliki potensi energi listrik yang berasal dari sinar matahari yaitu sebesar 4,5 kW/m2/hari. Hal ini sangat potensial untuk dimanfaatkan dalam memenuhi kebutuhan energi listrik, terutama untuk menangani keterbatasan listrik yang dihasilkan dari bahan bakar fosil.

Untuk mengantisipasi pertumbuhan kebutuhan energi listrik nasional dan keterbatasan ketersediaan sumber daya alam berbasis fosil maka diterbitkan Kebijakan Energi Nasional (KEN). Energi listrik terbarukan bisa dalam bentuk pembangkit listrik tenaga air (PLTA) dan mikrohidro (PLTM), pembangkit listrik tenaga surya (PLTS), pembangkit listrik tenaga angin (PLTB), pembangkit listrik biomassa, dan pembangkit listrik tenaga panas bumi (PLTPB). Potensi energi alternatif dan terbarukan tersebut cukup banyak namun belum dimanfaatkan secara optimal. Pada tahun 2025 diharapkan peran energi terbarukan akan mencapai sekitar 5% dari keseluruhan kapasitas pembangkitan listrik nasional. Peran PLTS diharapkan dapat menyumbang sebesar 800 MW dengan pertumbuhan sekitar 40 MW per tahun (Kumara, 2010).

Sebagai institusi riset, LRMPHP telah melakukan penelitian tentang perancangan sistem hibrid pembangkit listrik tenaga surya (PLTS) dengan PLN untuk mesin pembuat es (ice maker). Penelitian ini bertujuan untuk mengetahui beban daya PLTS yang dibutuhkan, kebutuhan dan spesifikasi panel surya (photo voltaic), baterai, alat pengatur pengisian baterai (charge controller) dan alat pengubah arus searah menjadi arus bolak-balik (inverter)Metode yang digunakan yaitu analisis atau perhitungan teorotis untuk menentukan beban energi yang diperlukan oleh ice maker, perhitungan daya dalam waktu pemakaian (Watt hour) yang mampu disediakan oleh PLTS hibrid, seleksi panel surya dan bahan lainnya yang akan digunakan berdasarkan material dan spesifikasinya. Kondisi awal (initial condition) yaitu ice maker dengan kapasitas sampai dengan 200 kg es/ hari dengan daya 760 watt. Ice maker yang digunakan merupakan jenis flakes ice maker, atau penghasil es berbentuk serpihan atau serut (flakes) yang diperuntukkan bagi pengepul atau pedagang ikan skala kecil dengan konsumsi daya listrik yang rendah.

Hasil penelitian menunjukkan bahwa untuk desain 8 jam operasional dengan penggunaan 50% PLTS sebesar 6080 Wh diperlukan spesifikasi dari komponen sebagai berikut : 1) Tujuh buah panel surya dengan kapasitas per buah sebesar 200 Wp, 2) Jenis panel surya yang digunakan yaitu polycristalline, 3) Kapasitas baterai 100 Ah, 48 volt, 4) Jenis aki yang digunakan yaitu aki kering, 5) Kapasitas arus charge controller lebih besar dari 15,83 A, 6) Tegangan keluaran pada charge controller sebesar 48 volt, 7) Jenis charge controller yang digunakan yaitu Pulse Width Modulator (PWM) Controller, dan 8) Spesifikasi inverter yang digunakan yaitu : tegangan masuk 48 volt DC, tegangan keluar 220 volt 1 phase, input lebih besar dari 15,83 A, gelombang output adalah gelombang sinus murni (jenis Pure Sine Wave Inverter).


Sumber : Prosiding KSNTTG LIPI 2016

Selasa, 14 Agustus 2018

Alat Impregnasi Vakum dan Uji Performansinya Pada Filet Ikan

Impregnasi vakum (vacuum impregnation) merupakan suatu metode dalam pengolahan pangan. Prinsip impregnasi adalah mengeluarkan sebagian atau keseluruhan udara maupun cairan dalam suatu bahan pangan kemudian menggantikannya dengan cairan atau larutan osmotik yang dikehendaki. Saat bahan pangan diberi perlakuan impregnasi vakum, cairan yang ada dalam bahan akan keluar karena kondisi tekanan lingkungan di bawah tekanan atmosfir, bagian-bagian yang kosong tersebut akan terisi kembali oleh cairan lain ketika tekanan dikembalikan pada tekanan atmosfir seperti semula atau lebih tinggi hingga tercapai keseimbangan antara cairan dalam bahan dan lingkungan.

Saat ini metode impregnasi vakum tengah popular sebagai metode untuk pengkayaan (enrichment) produk pangan. Penelitian membuktikan bahwa jaringan sel pada buah-buahan bisa diperkaya dengan berbagai bahan seperti probiotik, vitamin dan mineral tertentu untuk menambah manfaatnya. Metode impregnasi vakum juga dapat memperbaiki rasa, memperpanjang daya simpan dan memperbaiki warna pada produk pangan. Oleh karena itu metode impregnasi vakum berpeluang besar untuk memperbaiki kualitas produk olahan ikan. Hal ini karena daging ikan mempunyai sifat matrik sel yang longgar sehingga proses penggantian cairan dalam daging ikan dengan larutan osmotik akan lebih mudah.

Saat ini pengolahan ikan dengan cara penggaraman dan pengasapan masih membutuhkan waktu yang lama karena penyerapan garam maupun asap berjalan lambat sehingga beresiko terjadinya kemunduran mutu ikan. Untuk mengatasi hal tersebut maka diperlukan peralatan agar proses pengolahan ikan lebih efisien. LRMPHP telah melakukan penelitian perancangan alat impregnasi vakum dan uji performansinya pada filet ikan. Alat impregnasi vakum dirancang dengan dimensi panjang 800 mm, lebar 570 mm dan tinggi 1740 mm menggunakan bahan besi hollow 4x4 cm. Semua bagian yang bersentuhan langsung dengan larutan garam, asap cair dan sampel digunakan bahan stainless steel tipe 304. Bagian utama alat impregnasi vakum tekan antara lain tangki vakum, tangki penyimpanan, tangki pengaduk, sistem pemvakuman, pompa pendorong manual, sistem aliran bahan dan panel kontrol (Gambar 1.). Alat tersebut menghasilkan kekuatan vakum maksimal sebesar -76 cmHg dalam 9,15 menit sedangkan kekuatan tekan/impregnasinya maksimal 8 Bar dalam 38,70 menit.
Gambar 1. Alat impregnasi vakum

Uji performansi alat impregnasi dilakukan menggunakan larutan osmotik berupa larutan garam (1,74%) dan asap cair (1,5%) yang diintroduksi ke dalam filet ikan nila. Penggunaan larutan garam dan larutan asap cair dipilih dalam uji karena prinsipnya lebih sederhana. Hasil uji performansi menunjukkan bahwa alat impregnasi vakum tersebut mampu mengintroduksikan larutan garam dan asap cair ke dalam filet ikan nila dengan lebih efisien dibandingkan tanpa menggunakan alat (perendaman). Dalam waktu 10 menit vakum dan 15 menit impregnasi mampu mengintroduksikan larutan garam sebanyak 1,25% dan fenol 15,18 mg/kg, sedangkan dengan metode perendaman selama 60 menit hanya mampu menyerap 0,4% larutan garam dan 2,95 mg/kg fenol.

Jumat, 10 Agustus 2018

Alat Steam Boiler Sebagai Sumber Energi Dalam Ekstraksi Alginat

Steam (uap panas) saat ini menjadi sumber energi penting bagi dunia industri. Uap panas dapat dimanfaatkan sebagai bahan pengolahan pangan maupun non pangan. Sistem yang digunakan untuk menghasilkan uap panas disebut boiler atau steam generatorBoiler adalah bejana tertutup yang menghasilkan uap panas dari pemanasan air melalui system pembakaran bahan. Menurut American Society of Mechanical Engineers (ASME), sebuah unit pembangkit uap didefinisikan sebagai kombinasi peralatan untuk memproduksi, melengkapi atau recovery panas bersama dengan peralatan penghasil uap dari fluida panas.

Steam boiler terdiri dari dua bagian utama, yaitu tempat pembakaran bahan bakar dan tempat penukar panas yang mengubah air menjadi uap. Tipe-tipe boiler yang banyak digunakan saat ini adalah tipe fire-tube, water tube, modular, coil tube dan cast ironSteam boiler dapat digunakan untuk berbagai fungsi, seperti proses penguapan panas, pembangkit listrik, proses petrokimia dan chemical recovery. Selain itu uap yang dihasilkan dari steam boiler dapat digunakan sebagai fluida kerja maupun media pemanas untuk berbagai macam keperluan rumah tangga sampai keperluan industri. Steam Boiler hasil rancang bangun seperti disajikan pada gambar 1.

Gambar 1. Steam Boiler Hasil Rancang Bangun
Pada industri pengolahan alginat, salah satu tahapan  yang harus dilakukan adalah proses penggilingan saat ekstraksi agar alginat yang terekstrak lebih banyak. Proses penggilingan akan sulit dilakukan bila dilakukan ekstraksi skala besar, terlebih kondisi media dan rumput laut bersuhu tinggi. Sedangkan bila tanpa proses penggilingan, rendemen dan viskositas alginat yang dihasilkan masih rendah. Oleh karena itu diperlukan alat untuk mempermudah proses penggilingan dalam proses ekstraksi. Dengan ekstraksi menggunakan uap panas diharapkan akan mempermudah ekstraksi rumput laut untuk mengeluarkan alginat.

LRMPHP telah melakukan penelitian tentang rancang bangun mesin steam boiler sebagai sumber energinya dalam ekstraksi alginat dari rumput laut Sargassum sp. Tujuan dari penelitian ini adalah untuk mendapatkan perlakuan terbaik performansi steam boiler sebagai sumber uap panas. Steam boiler yang digunakan merupakan steam boiler jenis water tube. Pemilihan steam boiler jenis water tube dikarenakan memiliki beberapa keuntungan antara lain mampu bekerja pada tekanan tinggi, berat steam boiler yang relatif lebih ringan dibandingkan dengan kapasitas boiler, kapasitas yang besar, dapat dioperasikan dengan cepat sehingga dalam waktu singkat telah dapat memproduksi uap.

Perlakukan yang digunakan dalam penelitian adalah variasi volume air umpan (water feed) sebanyak 20, 30 dan 40 liter, serta besar tekanan uap 1 dan 2 atm. Berdasarkan hasil pengujian diperoleh bahwa perlakukan terbaik adalah volume air umpan sebanyak 30 liter pada tekanan 1 atm. Dengan nilai rata-rata lama pemasakan selama 72.67 menit, kebutuhan bahan bakar 0.87 kg, suhu output 860 C, volume uap panas yang dihasilkan 6034.13 kJ/jam dan rendemen ekstrak rumput laut yang dihasilkan sebanyak 70.3 %.

Rabu, 01 Agustus 2018

Pembuatan Pupuk Granul Rumput Laut Menggunakan Prototipe Granulator Vertikal dengan Variasi Kecepatan Putaran Chopper

Pemakaian pupuk kimia untuk pertanian yang melebihi ketentuan dosis dapat mengakibatkan menurunnya kualitas lahan dan berimbas pada penurunan hasil panen. Oleh karena itu para petani mulai beralih menggunakan pupuk organik untuk merawat/menjaga tingkat kesuburan tanahSalah satu bahan yang potensial digunakan dalam pembuatan pupuk organik adalah rumput laut. Bahan ini kaya kandungan mineral, nutrien anorganik dan bahan organik seperti hormon pemacu tumbuh (sitokininauksin, dan giberelin).

Pupuk organik memiliki beberapa macam bentuk seperti tablet, briket, curah, dan granul. Bentuk granul adalah yang paling diminati di pasaran karena granul lebih mudah ditaburkan/diaplikasikan dan mudah meresap ke tanaman. Massa granul lebih ringan daripada bentuk curah, sehingga memudahkan dan mengurangi biaya tranportasi. Pada proses granulasi, partikel-partikel kecil disatukan dan dipadatkan untuk membentuk gumpalan yang kuat secara fisik dengan struktur permanen dimana partikel aslinya masih bisa dibedakanCara yang paling sederhana dalam pembuatan granul adalah dengan menggunakan nampan. Metode ini biasanya digunakan untuk membuat granul skala kecil. Dalam perkembangannya terdapat beberapa tipe granulator yang umum digunakan di industri yaitu: fluidized bed granulatorhigh shear granulatordisc granulator (pan granulator) dan drum granulator.

LRMPHP telah mengembangkan granulator dengan mengadopsi granulator tipe vertical high shear. Granulator tipe ini menggunakan impeller yang berfungsi sebagai pengaduk untuk membentuk gumpalan basah dan chopper yang berfungsi sebagai pemecah gumpalan sehingga menghasilkan granul dengan densitas tinggiImpeller berputar pada kecepatan rendah sampai tinggi untuk menciptakan kondisi pengadukan yang diharapkan. Setelah tepung (powder) tercampur rata maka ditambahkan air untuk membasahi adonan sehingga saling terikat dan membentuk gumpalan basah (metode granulasi basah).  

Granulator yang dikembangkan LRMPHP tersebut, pada proses pemadatan granul terdapat 2 drum yang berfungsi untuk memadatkan granul yang sudah terbentuk pada drum 1. Kecepatan putar pada chopper merupakan salah satu faktor utama dalam pembentukan granul karena berpengaruh terhadap rendemen granul. Oleh karena itu kecepatan putar chopper menjadi hal penting dalam pembuatan granulator. Uji coba granulasi dilakukan menggunakan model alat granulator vertikal rancangan LRMPHP (Gambar 1 dan 2).
Gambar 1. Alat uji granulator rancangan LRMPHP
Prinsip kerja alat tersebut dengan memanfaatkan impeller sebagai pengaduk dan chopper sebagai pemecah untuk membentuk campuran tepung menjadi bentuk granul. Pada drum 1 terdapat impeller yang berputar dengan kecepatan tertentu. Dengan tambahan air dan diaduk menggunakan impeller dalam waktu tertentu maka adonan akan membentuk gumpalan basah. Gumpalan basah tersebut akan dipecah oleh chopper yang berputar dengan kecepatan tertentu sehingga membentuk butiran (granul). Kombinasi dan variasi kecepatan putar antara impeller dan chopper akan menghasilkan ukuran granul yang bervariasi. Pada drum 2 dan 3 terdapat piringan yang berputar dengan kecepatan tertentu. Piringan yang berputar tersebut mengakibatkan gaya sentrifugal sehingga granul yang sudah terbentuk akan berputar-putar dan menjadi semakin padat.  
Gambar 2. Ilustrasi drum 1 alat uji granulator LRMPHP
Hasil uji coba pembuatan pupuk granul rumput laut dengan variasi kecepatan putar chopper ditunjukkan pada gambar 3. Perbandingan nilai rendemen pada granul ukuran kecil (D < 4 mm), granul ukuran sedang (3 – 4 mm)  dan granul ukuran besar (D > 4 mm) pada pengaturan kecepatan chopper 1070 : 896 rpm, berturut turut yaitu sebesar 93,38 % : 98,95 %, 61,76 % : 23,04 %, 15,46 % : 33,22 % dan 16,17 % : 42,69 %. Hasil analisis statistik data dengan tingkat kepercayaan 95% menunjukkan bahwa kecepatan putar chopper tidak berpengaruh signifikan terhadap rendemen granul total tetapi berpengaruh cukup signifikan terhadap rendemen pada berbagai ukuran granul yang dihasilkan. Dengan kecepatan putar chopper sebesar 1070 rpm menghasilkan lebih banyak granul dengan ukuran kecil, sedangkan pada 896 rpm menghasilkan lebih banyak granul berukuran sedang sampai besar dibandingkan dengan granul ukuran kecil. Oleh karena itu, kombinasi antara kecepatan putar impeller dan chopper perlu diperhatikan untuk memperoleh ukuran granul yang diharapkan. 
Gambar 3. Granul yang dihasilkan pada dua variasi putaran; a). Hasil granul pada putaran 896 rpm;
b). Hasil granul pada putaran 1070 rpm


Sumber : Prosiding Semnaskan UGM

Senin, 23 Juli 2018

Perbandingan Pembacaan Sensor Gas (MQ-3 dan MQ-9) pada Proses Pembusukan Ikan Tuna (Thunnus sp)

Status kesegaran ikan berkaitan erat dengan keamanan makanan bagi konsumen dan cita rasa ikan. Metode uji kesegaran ikan yang sering digunakan saat ini adalah uji organoleptik yang didasarkan pada bau ikan, tekstur daging ikan dan kondisi visual ikan. Validitas uji ini bergantung pada  panelis terlatih yang berpengalaman sehingga hal ini dapat menjadi kendala terkait ketersediaan panelis terlatih. Selain uji organoleptik, uji kimiawi dan bakteri lazim digunakan dilaboratorium pengujian. 

Uji kimiawi didasarkan pada produksi senyawa gas volatil yang dihasilkan saat proses pembusukan ikan. Senyawa gas volatil tersebut diikat oleh asam borat dan pengukuran kadarnya dengan titrasi HCl. Untuk meningkatkan keakurasian pendeteksian produksi senyawa volatil dapat dilakukan dengan menggunakan kromatografi cair (HPLC) atau kromatografi gas (GC). Sampai saat ini, metode kromatografi memiliki akurasi yang paling baik namun memberikan biaya pemeriksaan yang mahal dan hanya bisa dilakukan di dalam laboratorium dengan peralatan khusus. Sementara itu, pengujian bakteri yang didasarkan pada jumlah populasi bakteri total pada ikan memerlukan waktu yang relatif lama untuk inkubasi penumbuhan total bakteri. Tingginya populasi bakteri pada ikan tersebut dianggap sebagai penanda peningkatan aktivitas bakteri pembusuk.

Metode lain yang lebih fleksibel dan praktis adalah pengukuran kesegaran ikan menggunakan alat Torry meter. Prinsip kerja alat tersebut dengan mengukur konduktivitas jaringan ikan. Konduktivias jaringan ikan didefinisikan sebagai sifat elektrokimia yang semakin meningkat seiring tingkat pembusukan ikan. Namun alat tersebut hanya bisa digunakan pada permukaan kulit ikantidak bisa digunakan pada fillet ikan dan ikan yang di bekukan.

Ditengah kekurangan metode pemeriksaan kesegaran ikan saat ini, aplikasi sensor gas semikonduktor sebagai pendeteksi kesegaran ikan menawarkan metode yang relatif cepat, murah dan mudah. Sensor gas semikonduktor menggunakan sebuah material (SnO2, ZnO dan TiO2) dengan konduktivitas berubah ubah menyesuaikan absorbsi gas. Aplikasi sensor gas semikonduktor untuk keperluan deteksi kesegaran ikan telah banyak dilaporkan. Ho Park, et al (2013) menggunakan deret sensor gas untuk pendeteksian senyawa trimethylamin dan amonia. Barbri et al (2009) dapat memanfaatkan deret sensor untuk menentukan kesegaran ikan sarden. Bahkan secara lebih jauh Olafsdottir, et al (2006) melaporkan menggunakan elektronic nose untuk mendefinisikan sisa metabolism spesifik sebuah bakteri pembusuk. LRMPHP juga telah mengembangkan penggunaan sensor gas untuk pemeriksaan kemunduran mutu ikan. Salah satu jenis sensor yang digunakan adalah sensor jenis MQ-136 untuk pendeteksian gas H2S pada ikan tuna. 

Saat ini sensor gas telah diproduksi masal dengan harga yang relatif murahvariatif dan spesifik dalam mendeteksi gas. Sensor MQ-3 merupakan sensor yang sensitif untuk mendeteksi gas alkohol sedangkan sensor MQ-9 merupakan sensor yang memiliki kemampuan untuk mendeteksi gas CO pada sumber daya rendah dan mendeteksi gas metana pada sumber daya tinggi. Sensor gas hanya mampu membaca data analog berupa gas, sehingga masih diperlukan mikrokontroler sebagai pengubah sinyal analog dari sensor ke data digital berupa deretan angka. Sensor MQ-3 atau MQ-9 dapat dengan mudah ditemui di toko elektronik robotika, hal ini dapat menjadikan sensor MQ-3 atau MQ-9 sebagai alternatif yang cepat, mudah dan murah untuk pendeteksian kebusukan ikan.

Atas dasar itu maka LRMPHP telah melakukan penelitian tentang perbandingan pembacaan sensor gas (MQ-3 dan MQ-9) pada proses pembusukan ikan tuna seperti dipublikasikan dalam SIMNASKP IV UNHAS 19-20 Mei 2017 di Makasar. Penelitian untuk mengetahui respon terbaik dua sensor tersebut terhadap perubahan bau ikan tuna sehingga diperoleh sensor gas yang paling baik untuk mendeteksi pembusukan ikan tuna.

Rangkaian pembacaan sensor gas MQ-3 dan MQ-9 terhadap kebususkan ikan pada penelitian tersebut dapat dilihat pada Gambar 1.

 Gambar 1. Rangkaian pembacaan sensor gas MQ-3 dan Mq 9 terhadap kebusukan ikan
Hasil pembacaan sensor MQ-3 dan MQ-9 terhadap sampel ikan  tuna masing-masing dapat  dilihat pada Gambar 2 dan 3 berikut:

Gambar 2. Grafik regresi pembacaan sensor MQ 3 terhadap waktu

Gambar 3. Grafik regresi pembacaan sensor MQ-9 terhadap waktu
Berdasarkan hasil uji regresi sensor gas terhadap waktu pengamatan, terdapat korelasi yang kuat antara pembacaan sensor MQ-3 dan MQ-9 terhadap pembusukan ikan. Nilai R2 sebesar 0,945 volt untuk sensor MQ-9lebih tinggi dibandingkan nilai R2 untuk sensor MQ-3 sebesar 0,847 volt, hal ini menunjukkan waktu lebih berpengaruh terhadap pembacaan sensor MQ-9 dari pada sensor MQ-3.  

Sumber : Prosiding SIMNASKP IV UNHAS 2017

Kamis, 12 Juli 2018

Aplikasi Sensor MQ-136 Pada Pembacaan Penurunan Kesegaran Ikan Tuna (Thunnus Sp)

Indonesia memiliki laut yang sangat  luas dengan kekayaan ikan tuna yang melimpah. Ikan tuna (Thunnus sp.) merupakan salah satu komoditas perikanan yang potensial di Indonesia. Upaya untuk meningkatkan mutu ikan tuna perlu dilakukan secara intensif agar dapat bersaing di pasar internasional. Sejalan dengan hal itu maka perlu dilakukan pengawasan mutu yang ketat pada pada produk tersebut. Pengawasan mutu ikan biasanya dapat dilakukan melalui pengujian baik secara organoleptik, mikrobiologi maupun kimiawi, tetapi cara ini kurang efektif karena membutuhkan waktu yang lama. Sementara itu, dalam perkembangannya digunakan metode lain dalam pengujian kesegaran ikan yaitu menggunakan sensor.

Pada dua tahun terakhir ini LRMPHP telah melakukan beberapa penelitian aplikasi berbagai sensor untuk menentukan kesegaran ikan. Penggunaan sensor saat ini dapat dilakukan menggunakan sensor elektronik atau yang lebih dikenal dengan e-nose. Sensor menerima rangsangan dan meresponnya dengan perubahan sinyal listrik. Alat e-nose lebih efektif karena tidak terlalu membutuhkan waktu lama, lebih efisien, ekonomis dan bersifat nondestruktif. Salah satu pendeteksian melalui sensor adalah pendeteksian gas H2S (hydrogen sulfide). Gas H2S  merupakan salah satu gas penyebab bau busuk pada produk perikanan. Keberadaan gas H2S tersebut dapat digunakan sebagai penanda penurunan kualitas ikan, sehingga perubahan bau pada ikan dianggap menjadi metode potensial untuk menilai kesegaran ikan.

Salah satu jenis sensor yang dapat digunakan untuk pendeteksian gas H2S adalah sensor jenis MQ-136 dengan SnO(timah oksida) sebagai elemen sensornya. Sensor MQ-136 dikenal cukup sensitive dan akurat. Sebagai elemen sensornya, semikonduktor SnO2 digunakan sebagai material yang sensitif sebagai penerima respon rangsangan gas H2S. Konduktivitas SnO2 akan meningkat ketika konsentrasi gas H2S tinggi. Oleh karena itu, keberadaan H2S pada ikan dapat dideteksi menggunakan sensor MQ-136 dan diharapkan dapat membantu peningkatan mutu ikan tuna Indonesia

Untuk mengetahui penggunaan sensor MQ-136 dalam mendeteksi gas H2S pada ikan maka LRMPHP telah melakukan penelitian terkait aplikasi sensor MQ-136 pada pembacaan penurunan kesegaran ikan tuna (Thunnus Sp). Penelitian dilakukan menggunakan ikan tuna dengan dua ukuran yang berbeda yaitu ikan tuna A dengan berat 570 gram dan panjang 33 cm dan ikan tuna B dengan berat 1.200 gram dan panjang 44 cm. Ikan selanjutnya disimpan dalam wadah tertutup yang memiliki saluran atas sebagai saluran keluar gas. Pengamatan dilakukan setiap jam hingga jam ke-8 dan diakhiri pada pengamatan jam ke-24. Sensor yang digunakan selama pengamatan adalah MQ-136 (Gambar 1.), yang dirakit pada Arduino UNO (Gambar 2.) sebagai alat penghubung pada laptop (Gambar 3.) dan alat pengolah hasil pembacaan sensor.
Gambar 1. Sensor Gas MQ-136

Gambar 2. Arduino UNO

Gambar 3. Laptop
Hasil pembacaan sensor MQ-136 pada ikan A dan ikan B (Tabel 1.), menunjukkan ada peningkatan respon sensor pada setiap pembacaan. Peningkatan ini diduga karena perubahan kandungan udara yang berada dalam kotak tempat ikan. Bertambahnya waktu penyimpanan ikan menyebabkan proses pembusukan menjadi lebih banyak, sehingga kandungan H2S mengalami peningkatan. Penambahan nilai H2S menyebabkan respon terhadap material SnO2 pada sensor MQ-136 menjadi lebih besar. Penambahan gas H2S pada ikan A dan ikan B memiliki perbedaan oleh karena itu dilakukan analisa lebih lanjut.
Tabel 1. Hasil pembacaan  MQ-136 pada ikan A dan ikan B
Waktu
Ikan A (V)
Ikan B (V)
0
2,6
2,59
1
2,81
3,13
2
2,78
3,07
3
2,75
3,01
4
2,79
2,95
5
2,84
2,96
6
2,85
2,99
7
2,8
2,93
8
3,29
2,99
24
4,2
4,42

Berdasarkan data yang dipeoleh maka dapat disimpulkan bahwa pola grafik perubahan pembacaan sensor MQ 136 selama pengamatan lebih memiliki tingkat eror yang kecil pada ikan A (R2 = 0,926) dibandingkan ikan B (R2 = 0,830). Hal ini dapat diartikan  sensor MQ136 lebih  akurat untuk ikan A (570 gram) dengan model persamaannya  dibandingkan dengan ikan B (1.200 gram) pada proses pembacaan keberadaan gas H2S.
Sumber : Prosiding SIMNASKP IV UNHAS 2017

Senin, 02 Juli 2018

Potensi Pemanfaatan Udang Dan Rajungan Rucah Sebagai Bahan Baku Alternatif Pakan Ikan

Tepung ikan merupakan produk penting untuk menunjang usaha peternakan dan budidaya perikanan karena menjadi komponen utama sumber protein dalam formulasi pakan. Hal ini mengingat kandungan protein pada ikan yang cukup besar dan mencapai lebih dari 20%. Sejalan dengan berkembangnya industri peternakan dan budidaya perikanan, kebutuhan tepung ikanpun semakin meningkat. Permintaan tepung ikan berkisar antara 150.000 - 200.000 ton per tahun, dan diprediksi setiap tahunnya mengalami kenaikan 10 -15%. Dengan produksi lokal sekitar 45.000 ton, kebutuhan tepung ikan di dalam negeri harus dipenuhi dari impor. Sampai saat ini impor bahan baku pakan ikan, terutama tepung ikan setiap tahunnya mencapai 35% dari total impor perikanan Indonesia, padahal Indonesia memiliki banyak potensi perikanan yang dapat dimanfaatkan menjadi tepung ikan, misalnya udang dan rajungan rucah.

Udang dan rajungan merupakan komoditas penting perikanan di tingkat internasional. Namun demikian, terdapat udang maupun rajungan dalam jumlah besar yang tidak laku terjual oleh pemasar ikan lokal, baik karena kualitas yang tidak memenuhi standar maupun penurunan daya beli konsumen. Udang dan rajungan yang tidak laku terjual ini nilai ekonomisnya menjadi turun, tidak layak dikonsumsi manusia dan dapat dikategorikan sebagai udang dan rajungan rucah.

Melihat besarnya potensi udang dan rajungan rucah, serta kebutuhan akan bahan alternatif sebagai bahan baku pakan ikan, maka LRMPHP telah melakukan penelitian potensi pemanfaatan udang dan rajungan rucah sebagai bahan baku alternatif pakan ikan. Bahan untuk pembuatan tepung berupa udang dan rajungan yang diperoleh dari pasar ikan di pantai Depok, Bantul, DIY. Udang dan rajungan dicuci menggunakan air, lalu dikukus dengan menggunakan alat pengukus selama 30 menit, selanjutnya dilakukan proses penirisan dan penggilingan dengan menggunakan grinder. Material dalam kondisi lumat kemudian dijemur di bawah sinar matahari selama 2-3 hari hingga kering (estimasi kadar air w/w = 10%). 

Berdasarkan hasil pengamatan terhadap tepung udang dan rajungan rucah yang diperoleh, keduanya mempunyai kenampakan warna khas tepung ikan sebagaimana terlihat pada Gambar 1 di bawah ini.

Gambar 1. Tepung udang dan rajungan rucah

Rendemen tepung udang dan rajungan yang diperolah masing-masing sebesar 15,87% dan 23,20%, penurunan bobot tersebut terjadi karena proses pengolahan dan pada saat pengeringan. Hasil pengujian kadar nutrisi, kimia, organoleptik dan mikrobiologi (Salmonella) tepung udang dan rajungan selengkapnya disajikan pada Tabel berikut.

Tabel. Hasil pengujian nutrisi, kimia, organoleptik dan Salmonella tepung udang dan tepung rajungan
Produk
Kadar Nutrisi dan Kimia (%)
Organo-leptik
Salmo-nella
Kalsi-um
Fos-for
NaCl
Air
Abu
Protein
Lemak
Serat
Tepung udang rucah
7,36
4,88
1,07
7,01
48,39
45,61
3,78
5,32
3,53
negatif
Tepung rajungan rucah
15,75
5,04
1,11
6,46
47,84
35,91
1,00
11,52
4,38
negatif
SNI Tepung Ikan 2016 (Mutu III)
2,5-7,0
1,6-4,0
≤4
≤12
≤30
≥45
≤12
≤3
≥6
negatif










Berdasarkan hasil pengujian tersebut terlihat bahwa kadar air, lemak, protein (tepung udang) dan NaCl masih memenuhi standar SNI, sedangkan kalsium, fosfor belum memenuhi standar SNI sehingga perlu dilakukan modifikasi/penambahan nutrien tertentu agar dapat memenuhi standar SNI. Hasil pengujian secara organoleptik juga menunjukkan bahwa tepung udang dan rajungan rucah yang dihasilkan dari percobaan ini belum memenuhi persyaratan yang ditetapkan SNI. Selain pengujian secara kimia dan organoleptik, pengujian secara mikrobiologi (Salmonella) kedua jenis tepung juga dilakukan dan hasilnya negatif sehingga memenuhi persyaratan SNI.

Sumber : Prosiding Semnaskan UGM 2015