EKONOMI BIRU

Arah Kebijakan Pembangunan Sektor Kelautan dan Perikanan 2021 - 2024 Berbasis EKONOMI BIRU

ZI WBK? Yes, We CAN

LRMPHP siap meneruskan pembangunan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) yang telah dimulai sejak tahun 2021. ZI WBK? Yes, We CAN.

LRMPHP ber-ZONA INTEGRITAS

Loka Riset Mekanisasi Pengolahan Hasil Perikanan siap menerapkan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) 2021.

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Produk Hasil Rancang Bangun LRMPHP

Lebih dari 30 peralatan hasil rancang bangun LRMPHP telah dihasilkan selama kurun waktu 2012-2021

Kerjasama Riset

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Kanal Pengelolaan Informasi LRMPHP

Diagram pengelolaan kanal informasi LRMPHP

Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan
Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan

Selasa, 09 April 2019

Menghalau Ikan Predator dari Perairan Umum dengan Memanfaatkan Teknologi Computer Vision

Spesies ikan yang besifat hama/pengganggu sedang berkembang biak dan mengancam seluruh dunia, menjadi bahaya serius untuk biodiversitas (keanekaragaman hayati) dan ekosistem serta memberi dampak kerugian ekonomi yang besar. Sebagai binatang peraiiran yang paling awal dikenal, ikan juga menjadi salah satu kelompok yang mendapat ancaman terbesar. Bagi spesies ikan yang dianggap sebagai hama/pengganggu, usaha untuk memisahkan ikan hama akan menurunkan biaya jangka panjang untuk upaya pemberantasan dan pengendaliannya.

Di Indonesia keberadaan organisme hama di perairan umum digolongkan menjadi dua yaitu predator dan kompetitor. Predator dapat menetap di area budidaya atau bermigrasi dalam rangkan mencari makan. Sementara kompetitor merupakan organisme yang bersaing dengan organisme lokal untuk mendapatkan ruang, pakan, dan oksigen. Selama ini di Indonesia terdapat dua cara utama pemberantasan hama yaitu (1) secara mekanis dengan cara diburu atau jika serangan hama sudah parah maka ikan budidaya harus dipindahkan dan (2) secara kimia yaitu menggunakan pestisida organik seperti saponin dan akar tuba (Anon, 2016). Kedua metode tersebut selain berbahaya bagi populasi ikan juga memilki dampak negatif bagi ekosistem perairan umum.

Untuk mengatasi permasalahan tersebut, Zhang et al., (2016) yang dipublikasikan di Biosystems Engineering telah mengembangkan teknologi computer vision sebagai upaya sistematis pada sistem biologi di daerah danau dan sungai untuk mengidentifikasi dan memisahkan spesies ikan hama. Sistem pemisahan ikan hama tersebut terdiri dari pintu masuk yang lebar (Gambar 1) dimana ikan berenang mendekati, kemudian area semakin menyempit hingga mendekati kamera, selanjutnya dengan bantuan sistem pencahayaan dipergunakan untuk mengambil citra dan mengidentifikasi ikan. Ketika ikan telah teridentifikasi maka gerbang pengarah dapat digunakan untuk mengontrol satu dari dua jalur dimana yang dapat dilalui ikan. Jika terdeteksi sebagai ikan hama maka ikan tersebut akan diarahkan ke area tunggu, sementara jika bukan ikan hama akan dikembalikan menuju badan air yang tidak membahayakan ikan.

 
Gambar 1. Sistem penghalau ikan predator menggunakan computer vision (Sumber : Zhang, et al. 2016)

Teknologi computer vision yang dikembangkan bertumpu pada kemampuan algoritma genetik dalam mengidentifikasi dan memisahkan spesies ikan hama. Algoritma genetik (GA) memiliki kemampuan untuk membangkitkan fitur spesifik yang disebut dengan fitur ECO sesuai jenis ikan hama yang akan dipisahkan. Setelah melalui transformasi citra dengan urutan tertentu, fitur yang telah dibangkitkan oleh GA akan dipetakan untuk proses klasifikasi sesuai vektor pembobotan dan ambang batas berdasarkan perceptron yang terbentuk pada tiap fitur. Proses seleksi fitur dilakukan berdasarkan fitness score tertinggi. Fitur ECO selesai dikonstruksi jika telah memenuhi jumlah generasi atau beberapa kriteria yang ditentukan.

Hasil penelitian yang telah dimuat dalam Biosystems Engineering 145 (2016) menunjukkan bahwa metode yang diusulkan mampu menghasilkan rerata akurasi klasifikasi sebesar 98% dengan standar deviasi 0.96% yang terdiri dari set data 8 spesies ikan dengan total citra sebanyak 1049. Sistem monitoring ikan berbasis computer vision tersebut dapat dibangun untuk memisahkan spesies ikan hama sekaligus memonitor kelimpahan, distribusi, ukuran spesies ikan lokal dengan dampak kerusakan yang minimal dan tidak membahayakan ikan. 

Penulis : I Made Susi Erawan (Peneliti Pertama LRMPHP)

Selasa, 26 Maret 2019

Identifikasi Kesegaran Ikan Berbasis Image Processing (Kombinasi Transformasi Wavelet dan Fuzzy Logic)

Ikan berperan sebagai salah satu komoditas penting sebagai sumber protein untuk manusia. Fungsi tersebut dapat dicapai dengan mempertahankan tingkat kesegarannya. Sejumlah faktor kimia, biologi, dan fisik dapat mempercepat penurunan kesegaran ikan. Untuk memenuhi tuntutan konsumen akan tersedianya ikan segar, perlu dikembangkan suatu metode yang bersifat non destruktif, mudah penggunaannya, dan tingkat akurasi yang tinggi.

Metode penilaian kesegaran ikan berbasis sensori manusia masih menjadi yang terbaik dan paling akurat dibanding sejumlah metode lain. Namun untuk mencapai akurasi seperti yang diharapkan, metode sensori tersebut sangat dipengaruhi sejumlah faktor seperti tahap preparasi sampel yang memadai dan ketersediaan tim panelis yang cukup berpengalaman, sehingga membutuhkan waktu yang cukup lama untuk menentukan kesegaran ikan.

Untuk mengatasi keterbatasan metode sensori tersebut perlu dikembangkan suatu metode yang dapat membantu mengatasi kelelahan yang dialami manusia selama proses pemeriksaan mutu kesegaran ikan secara visual. Sornam et al. (2017) dari Department of Computer Science, University of Madras, telah mengembangkan perangkat lunak untuk mendeteksi kesegaran ikan berbasis image processing (pengolahan citra).

Perangkat lunak yang dikembangkan meliputi modul penangkapan citra ikan. Setelah citra ditangkap terdapat modul untuk melakukan konversi ruang warna citra yang sesuai dengan persepsi mata manusia. Citra yang telah dikonversi tersebut selanjutnya disegmentasi untuk memisahkan area objek utama dengan area background. Proses segmentasi ini dilakukan melalui modul segmentasi berbasis clustering. Proses segmentasi akan menghasilkan area insang dan mata (ROI) yang akan diekstrak untuk mendapatkan informasi statistik atau sering disebut sebagai tahap ekstraksi fitur. Setelah tahap ekstraksi fitur, terdapat modul untuk menjalankan proses klasifikasi sehingga dapat ditentukan status akhir tingkat kesegaran ikan yang diuji.

Kelebihan perangkat lunak pengolahan citra yang dikembangkan tersebut terletak pada proses ekstraksi fitur menggunakan domain transformasi wavelet melalui aplikasi filter Haar serta aplikasi Fuzzy Logic dalam proses klasifikasi tingkat kesegaran ikan. Filter Haar ini mampu menguraikan hingga beberapa level piksel ROI dari citra ikan pada tingkat kesegaran tertentu sehingga didapatkan fitur statistik yang memiliki ciri pembeda. Fitur statistik yang dihasilkan tersebut akan digunakan sebagai input pada Fuzzy Logic dengan output berupa 3 level kesegaran ikan  yaitu busuk, cukup segar, dan sangat segar. Penggunaan Fuzzy Logic memiliki kelebihan yaitu mampu menangani ketidakjelasan batas nilai pada masing-masing tingkat kesegaran ikan sekaligus memungkinkan peneliti untuk memasukkan domain kepakaran berdasarkan pengalaman dan pengetahuan yang dimiliki untuk membentuk fungsi keanggotaan sekaligus batas nilai yang dimiliki pada tiap tingkat kesegaran ikan yang dikehendaki.

Penelitian yang dipublikasikan dalam Asian Journal of Computer Science And Information Technology (AJCSIT) tersebut menunjukkan penggunaan wavelet dengan fuzzy logic mampu membedakan secara nyata 3 tingkat kesegaran ikan yang diuji. Penelitian lanjutan diperlukan untuk menguji akurasi sistem pada jumlah sampel dan jenis ikan yang lebih banyak serta penambahan input yang lebih kompleks pada Fuzzy Logic sehingga nantinya diharapkan aplikasi image processing yang dikembangkan tersebut mampu menjadi terobosan penentuan kesegaran ikan dengan cepat dan akurat. Secara garis besar proses pengolahan citra hingga klasifikasi kesegaran ikan ditunjukkan pada Gambar berikut :
Gambar 1. Proses Pengolahan Citra hingga Klasifikasi Kesegaran Ikan
Sumber: Modifikasi dari Sornam et al., (2017)


Penulis : I Made Susi Erawan (Peneliti Pertama LRMPHP)

Penerapan Teknologi Microwave untuk Pengeringan Rumput Laut

Rumput laut merupakan komoditas kelautan dan perikanan yang cukup melimpah di Indonesia. Salah satu jenis rumput laut yang melimpah di perairan Indonesia adalah E. Cottonii. Mongabay (2018) menyampaikan bahwa sebesar 80% rumput laut di Indonesia dijual dalam bentuk kering. Kendala yang dihadapi oleh para petani rumput laut di Indonesia adalah proses pengeringan yang lama karena masih mengandalkan pengeringan secara konvensional, yaitu menggunakan sinar matahari langsung. 

Beberapa metode dan alat pengeringan sudah dikembangkan, umumnya adalah pengeringan secara konveksi. Sulaiman (2009) dalam Rubrik Teknologi menyampaikan bahwa pengeringan secara konveksi memiliki kelemahan yaitu energi yang tidak efisien karena waktu pengeringan yang lama dan kualitas produk yang kurang baik karena mengalami penyusutan ukuran dan perubahan bentuk produk. Selain itu pengeringan konvensional menyebabkan perubahan yang tidak diinginkan pada warna, tekstur, flavour dan kualitas nutrisi bahan pangan 

Menurut Orsat et al. (2017) yang disampaikan di artikel Microwave technology for food processing menyatakan bahwa masalah-masalah yang terkait dengan pengeringan konveksi dapat diatasi dengan metode pengeringan berbasis microwave dimana pemanasan yang terjadi adalah pemanasan volumetrik. Artikel lain yang dimuat di https://www.powderbulksolids.com/article (2012) menjelaskan bahwa pemanasan volumetrik adalah pemanasan dari bagian dalam ke luar material yang diakibatkan karena gesekan molekul air di dalam material. Akibat panas tersebut maka sebagian besar uap air diuapkan sebelum meninggalkan material. Hal ini menciptakan semacam pemompaan cairan dari dalam material ke permukaan. Prinsip pengeringan microwave seperti ditunjukkan pada gambar 1.

Gambar 1. Prinsip pengeringan microwave (Sumber : DOI: 10.1039/C7SE00254H (Review Article) Sustainable Energy Fuels, 2017, 1, 1664-1699)
Aplikasi pengeringan produk-produk pertanian dan pangan menggunakan microwave sudah banyak diteliti dan sudah di aplikasikan pada industri. Hal ini dilakukan karena pengeringannya lebih cepat dan tidak merusak kualitas produk. Dalam Handbook of microwave technology for food applications yang disampaikan oleh Datta & Anantheswaran (2001), microwave adalah gelombang elektromagnetik dengan interval frekuensi antara 300 MHz hingga 300 GHz dan panjang gelombang antara 1 mm hingga 1 m. Wray & Ramaswamy (2015) dalam Jurnal Drying Technology menyatakan bahwa frekuensi yang digunakan untuk aplikasi pemanasan microwave yaitu 915 MHz, 2450 MHz, dan 5800 MHz, tetapi yang umum digunakan untuk pengolahan makanan dan khususnya untuk oven microwave adalah 2450 MHz. 

Bahan yang menyerap microwave adalah bahan yang memiliki sifat dielektrik yang baik. Bahan-bahan tersebut adalah bahan yang memiliki kandungan air yang banyak. Berdasarkan studi literatur semakin tinggi kadar air material maka akan semakin tinggi pula loss factor material tersebut dan semakin cepat pula panas yang ditimbulkan. Rumput laut E. Cottonii memiliki kadar air yang cukup besar, menurut Muharany et al. (2017) yang dimuat dalam Jurnal Pengolahan Hasil Perikanan Indonesia melaporkan bahwa kadar air rumput laut sebesar 76,15% sehingga penerapan microwave untuk pengeringan rumput laut E. Cottonii sangat mungkin. 

Beberapa penelitian terkait dengan pengeringan rumput laut menggunakan microwave diantaranya oleh Kim & Shin (2017) yang dimuat dalam Korean Journal of Chemical Engineering yang melakukan penelitian untuk meningkatkan kualitas agar rumput laut Glacilaria verrucosa dengan menggunakan perendaman alkali dan pengeringan menggunakan microwave. Proses thawing dan pengeringan menggunakan metode konveksi dapat mengurangi sifat fisik dan kimia agar karena membutuhkan waktu yang lama. Oleh karena itu microwave dapat menjadi solusi karena dapat mempercepat proses pengeringan dibandingkan dengan pengeringan menggunakan udara panas. Serowik et al. (2017) disampaikan dalam Journal of Food Engineering melaporkan bahwa pengeringan menggunakan microwave secara substansi tidak merubah warna karagenan kering dan juga tidak memberi efek pada sifat-sifat hidrokoloid. Hasil penelitian tersebut menunjukkan bahwa pengeringan menggunakan microwave dapat dipertimbangkan untuk digunakan pada produksi karagenan. 

Penulis : Wahyu Tri Handoyo

Rabu, 13 Maret 2019

Bioetanol dari Limbah Rumput Laut (Bagian I)

Pasokan energi dunia yang berasal dari energi tidak terbarukan seperti fosil dan petrokimia kian menipis. Oleh karena itu, upaya pencarian energi terbarukan terus dilakukan, terutama energi terbarukan yang ramah lingkungan, seperti bioetanol. Etanol dapat dihasilkan dari rumput laut dengan cara merubah serat (komponen penyimpanan) dan selulosa (komponen penyusun dinding sel). Limbah rumput laut, khususnya limbah agar, memiliki beberapa komponen serat (Tabel 1) sehingga perlu dilakukan pemurnian untuk mengekstrak selulosanya agar dapat digunakan dalam pembuatan bioetanol.

Metode pemurnian selulosa yang sudah pernah dilakukan yaitu dengan menggunakan enzim xylanase (enzim yang memiliki kemampuan untuk memecah ikatan antara xilosa di xilan) yang dihasilkan dari jamur Aspergillus niger, yang kedua yaitu dengan menggunakan proses alkalisasi. Namun pemurnian dengan enzim xylanase membutuhkan waktu lama dan biaya yang tidak sedikit, sedangkan pemurnian dengan proses alkalisasi ini memiliki kelemahan yaitu masih ada sisa kadar lignin. Oleh karena itu perlu dicari cara pemurnian selulosa yang lebih efektif dan biayanya lebih terjangkau, salah satunya yaitu organosol. Organosol adalah salah satu metode yang telah dikomersialisasikan untuk memperoleh selulosa dari biomassa dengan menggunakan pelarut organik, misalnya dengan menggunakan etanol, asam asetat, atau aqueous methanol.

Selulosa sebagai bahan baku pembuatan bioetanol dapat diperoleh dari hasil samping pengolahan rumput laut (agar – agar). Pengolahan agar – agar menghasilkan residu sebanyak 65 – 70% dari keseluruhan bahan baku yang digunakan. Kelimpahan limbah agar ini belum termanfaatkan dengan baik, sehingga dapat digunakan sebagai bahan baku pembuatan bioetanol. Komponen serat yang terdapat pada beberapa bahan rumput laut disajikan pada Tabel 1. LRMPHP telah melakukan penelitian dalam rangka mendapatkan selulosa dari limbah agar. Salah satu metode yang dikembangkan disajikan pada Gambar 1.

Tabel 1. Komponen Serat pada Beberapa Bahan Rumput Laut

Bahan
Hemiselulosa (%)
Selulosa (%)
Lignin (%)
Bahan Ekstraktif Lainnya (%)
Limbah agar
13,89
59,69
2,37
24,05
Limbah karaginan
6,03
26,72
6,63
60,62
E. spinosum
45,27
4,08
10
40,65
G. salicornia
36,02
4,11
5
54,87
Ulva lactuca
16,42
19,58
2,9
61,1
C. crassa
43,73
25,5
4
26,77
S. polycystum
10,11
24,07
9,27
56,55


Gambar 1. Proses pemurnian selulosa dari limbah agar

Gambar 2. Limbah agar
Dengan menggunakan penambahan asam asetat 0,6 N sebesar 0,05%, rasio limbah agar dengan air 1 : 20, dan suhu pemanasan 80°C dapat diperoleh kadar selulosa sekitar 24 - 26%. Hasil selulosa selanjutnya dapat dipergunakan sebagai bahan baku dalam pembuatan bioetanol.

Penulis : Putri Wullandari, Peneliti Muda LRMPHP

Senin, 11 Maret 2019

THAWING IKAN BEKU MENGGUNAKAN TEKNOLOGI NON THERMAL

Ikan tuna merupakan komoditas perikanan yang menyumbang devisa negara terbesar kedua setelah udang. Produksi ikan Tuna mencapai 293,233 ton pada tahun 2017. Tuna sebagian besar tidak bisa sampai di tangan konsumen dalam keadaan segar. Hal ini karena lokasi penangkapannya yang jauh di tengah laut sehingga kapal penangkap tuna akan beroperasi dalam jangka waktu cukup lama (> 6 bulan), lokasi pasar ikan atau pelabuhan tuna jauh dari konsumen, dan juga dipengaruhi oleh adanya musim tangkapan. Oleh karena itu diperlukan teknologi pengawetan untuk mempertahankan kualitas tuna. Teknologi pengawetan yang paling banyak dilakukan ialah dengan pembekuan. Proses selanjutnya dalam pemanfaatan tuna ialah pengolahan menjadi produk pangan baik melalui pengalengan maupun jenis olahan lain. Pada industri pengolahan ikan, proses thawing bahan baku merupakan tahapan yang sangat krusial. Diperlukan metode thawing yang tepat agar bisa meminimalisir kerusakan dan kemunduran mutu tuna yang lebih besar. Metode-metode thawing yang banyak digunakan saat ini antara lain menggunakan hembusan udara, air panas, tekanan tinggi, frekuensi radio, microwave, gelombang infra-merah dan ultrasonik. Permasalahan yang dihadapi dengan menggunakan metode tersebut ialah waktu proses yang lama, penurunan bobot yang tinggi, peningkatan jumlah bakteri pembusuk, terjadi proses pembusukan secara kimia, suhu terlalu panas dan biaya tinggi. Padahal idealnya selama proses thawing diharapkan mampu mempertahankan kualitas ikan beku dengan proses cepat dalam suhu rendah. Karena waktu thawing yang lebih lama dapat menyebabkan pertumbuhan mikroba yang lebih cepat pada produk, mengurangi kelarutan protein dan peningkatan konsumsi energi. Thawing cepat pada suhu rendah dengan menggunakan metode non-thermal akan membantu mencegah penurunan kualitas bahan pangan beku selama produksi. Salah satu teknologi baru yang digunakan untuk thawing makanan beku ialah menggunakan metode High voltage electrostatic field (HVEF).

Tegangan tinggi atau medan listrik dapat meningkatkan molekul ionik pada udara dan mempercepat pergerakan ion tersebut. Perubahan transfer massa ion pada udara berkaitan dengan munculnya lecutan corona pada medan listrik. Lecutan ini akan memaksa ion-ion diudara melewati dan merubah struktur materi yang dilewati (kristal es pada daging) yang mengakibatkan kristal es mencair. 

LRMPHP telah melakukan penelitian pembuatan prototipe HVEF untuk thawing ikan tuna beku. Komponen HVEF terdiri dari generator daya tegangan tinggi yang dapat diatur hingga 200 kV oleh pengontrol dan arus keluaran maksimum 5 mA, dudukan berbahan kayu, plate electrode ukuran 8 x 12 cm berbahan tembaga, jarum tembaga berdiameter 0,4 mm dan panjang 60 mm. Elektroda ini terhubung ke kutub positif dari power supply. Alat thawing HVEF dan diagram kelistrikannya disajikan pada gambar 1.
Gambar 1. Prototipe alat thawing dan diagram kelistrikannya
Pada pengujian prototipe HVEF menunjukkan bahwa laju peningkatan suhu inti tuna beku lebih cepat 68 % dibandingkan tuna beku yang dithawing pada air mengalir. Tuna beku yang dithawing tersebut juga mengalami susut bobot sebesar 14%, nilai ini lebih rendah dibandingkan metode konvensional dengan nilai susut sebesar 22 %.

Penulis : Arif Rahman Hakim, Peneliti Muda LRMPHP

Senin, 15 Oktober 2018

Performansi Pendingin Termoelektrik Alat Transportasi Ikan Segar pada Berbagai Tegangan

Penanganan ikan pada suhu rendah merupakan teknik penanganan yang paling banyak digunakan untuk mempertahankan mutu ikan. Penanganan ikan selama kegiatan transportasi sampai pengolahan mensyaratkan dilakukan pada suhu rendah. Suhu merupakan faktor eksternal yang berperan penting pada proses kemunduran mutu ikan, karena bakteri-bakteri pembusuk berkembang lebih cepat pada suhu yang lebih tinggi. Proses pembusukan ikan dapat ditunda dengan menerapkan sistem rantai dingin yaitu mengkondisikan ikan pada suhu rendah. Pada suhu rendah aktivitas pembusukan secara kimiawi dan enzimatis dapat diperlambat.

Salah satu alat transportasi ikan yang biasa digunakan oleh pedagang ikan keliling adalah sepeda motor. Pada umumnya alat transportasi tersebut menggunakan kotak stirofom yang diletakkan di atas sepeda motor. Sistem rantai dingin dapat diterapkan dengan menambahkan es di dalam peti penyimpanan ikan atau menggunakan peti ikan berpendingin. Penggunaan es sebagai pendingin banyak diaplikasikan karena mudah dan mempunyai kapasitas pendinginan yang besar. Kendala yang dihadapi dalam penggunaan es adalah penambahan es dapat mengurangi kapasitas angkut. Selain itu juga menambah bobot peti sehingga dapat mengganggu keseimbangan berkendaraan karena kapasitas angkut sepeda motor terbatas. Penggunaan bongkahan es yang besar, kasar serta tajam juga dapat menyebabkan kerusakan fisik ikan. Goncangan alat yang terjadi selama transportasi menyebabkan gesekan antara es dan ikan sehingga dapat mengakibatkan memar dan luka pada permukaan ikan. Luka dan memar pada permukaan ikan tersebut dapat mempercepat proses pembusukan ikan oleh bakteri.

Sistem pendingin lain yang dapat digunakan dalam peti insulasi adalah sistem pendingin termoelektrik. Aplikasikan sistem pendingin pada alat transportasi ikan menggunakan sepeda motor mempunyai keterbatasan ruang, massa dan daya. Dengan demikian penggunaan sistem pendingin konvensional kurang efektif untuk diaplikasikan. Sistem pendingin termoelektrik menggunakan heat pipe dapat digunakan untuk membuat peti insulasi yang diaplikasikan menggunakan sepeda motor. Pendingin termoelektrik menggunakan elemen peltier bekerja menggunakan arus listrik searah. Hasil penelitian Shen dkk. (2012) dan Jugsujinda dkk. (2010) menunjukkan bahwa jumlah tegangan yang diberikan pada sebuah elemen termoelektrik berpengaruh terhadap capaian suhu ruang peti insulasi. Oleh karena itu diperlukan penelitian untuk mengetahui tegangan dan arus optimal pada sistem pendingin sehingga dapat ditentukan spesifikasi sumber energi yang tepat, karena sumber energy pada sepeda motor sangat terbatas.

LRMPHP telah melakukan penelitian tentang uji performansi sistem pendingin termoelektrik pada alat transportasi ikan. Penelitian bertujuan untuk mengetahui capaian suhu heat pipeheat sink dan ruang peti insulasi serta kebutuhan listrik sistem pendingin pada berbagai tegangan. Sistem pendingin termoelektrik tersusun dari dua buah elemen peltierbracket alumunium, fanheat sink dan heat pipe serta menggunakan sumber listrik dari aki. Tiap kotak penyimpanan ikan terdiri dari dua buah elemen peltier. Alat transportasi ikan rancangan LRMPHP tersebut dan skema penyusunan komponen pendinginnya ditunjukkan pada Gambar 1.

(a)
(b)
Gambar 1. (a) Alat transportasi ikan segar berpendingin dan (b) komponen pendinginnya

Uji performansi peralatan dilakukan pada tegangan 8, 10 dan 12 V. Parameter yang diukur adalah jumlah arus listrik yang melalui sistem pengingin, suhu heat sink, heat pipe dan suhu ruang peti insulasi. Suhu ruang peti insulasi yang dicapai pada tegangan 12, 10 dan 8 V berturut-turut sebesar 14, 16 dan 17 °C. Suhu heat sink yang dicapai pada tegangan 12 V sebesar -0,1 °C, sedangkan pada tegangan 8 dan 10 V tidak jauh berbeda yaitu antara 3-4 °C. Suhu heat pipe yang dicapai pada tegangan 12 dan 10 V tidak jauh berbeda yaitu sekitar 30-31 °C, sedangkan pada 8 V sebesar 27 °C. Kebutuhan arus listrik sistem pendingin pada tegangan 12, 10 dan 8 V sebesar 6,3; 4,8 dan 3,8 A dengan kebutuhan energi berturut-turut 75, 48 dan 30 Watt. Nilai cooling capacity elemen peltier pada tegangan 12 V sebesar 12,5 W, sedangkan pada tegangan 10 dan 8 V sebesar 10,5 W.



Senin, 08 Oktober 2018

Mutu Tepung Ikan Rucah Pada Berbagai Proses Pengolahan

Ikan rucah merupakan hasil samping pengolahan utama ikan maupun dari hasil tangkapan sampingan yang dipandang tidak memiliki nilai ekonomis, sehingga cenderung tidak diproses dan dibuang oleh pengolah atau nelayan. Jenis ikan ini memiliki kandungan protein yang cukup tinggi, sehingga dapat dimanfaatkan untuk diproses menjadi suatu produk dalam rangka pemanfaatan hasil samping, penerapan konsep zero waste dan peningkatan nilai tambah. Salah satu solusi yang dapat dilakukan untuk mengatasi hal tersebut adalah dengan memanfaatkan ikan rucah sebagai bahan baku tepung ikan.

Tepung ikan merupakan produk hasil pengeringan dan penggilingan dari ikan atau hasil samping pengolahan ikan tanpa penambahan material apapun. Proses pengolahan tepung ikan sangat beragam, tergantung pada komposisi kimia dan ketersediaan teknologi yang ada. Proses pengolahan tepung ikan secara umum dibagi menjadi dua metode yaitu metode kering dan metode basah berdasarkan kandungan lemak ikan, dimana pada metode basah dilakukan dengan cara perebusan. Penelitian pengolahan tepung ikan dengan proses perebusan yang dilanjutkan dengan pengepresan, pengeringan dan penggilingan telah dilakukan oleh beberapa peneliti sebelumnya. Beberapa penelitian lain juga menggunakan proses pengukusan dan presto sebagai proses utama untuk pembuatan tepung ikan. Perbedaan proses pengolahan tersebut diduga mempengaruhi kualitas mutu tepung ikan yang dihasilkan.

Kajian mutu tepung ikan berdasarkan perbedaan proses pengolahan ini telah dilakukan oleh beberapa penelitian terdahulu, namun belum memberikan informasi mutu tepung ikan secara lengkap sebagaimana tercantum dalam standar mutu tepung ikan SNI 01-2715-1996. Oleh karena itu, LRMPHP melakukan penelitian tentang mutu tepung ikan rucah pada berbagai proses pengolahan. Bahan utama penelitian berupa ikan rucah, dicuci menggunakan air lalu diolah dengan tiga macam perlakuan, yaitu perebusan selama 30 menit, pengukusan selama 30 menit dan presto selama 15 menit. Selanjutnya dilakukan proses penirisan dan penghalusan dengan menggunakan grinder. Material dalam kondisi lumat kemudian dijemur di bawah sinar matahari selama 2-3 hari hingga kering (estimasi kadar air < 10%), selanjutnya dilakukan proses penepungan dengan menggunakan blender. Tepung ikan yang diperoleh dianalisis dengan parameter pengujian kimia, mikrobiologi dan organoleptik sesuai Standar Nasional Indonesia SNI 01-2715- 1996.

Hasil penelitian menunjukkan bahwa kestabilan suhu selama proses dapat tercapai pada perlakuan perebusan dengan rendemen akhir tertinggi pada perlakuan pengukusan, yaitu sebesar 23.04%. Seluruh perlakuan memberikan nilai kadar protein di atas 50% dan kadar lemak di bawah 14% (memenuhi persyaratan SNI). Hasil pengujian mikrobiologi terhadap tepung ikan rucah menunjukkan negatif Salmonella untuk semua perlakuan sehingga memenuhi persyaratan SNI. Perlakuan perebusan mempunyai nilai tertinggi untuk parameter kenampakan dan tekstur pada pengujian organoleptik. Secara umum, perlakuan perebusan memberikan mutu tepung ikan rucah terbaik, dengan kadar air, protein, serat, abu, lemak, kalsium, fosfor dan NaCl berturut-turut sebesar 5,62%, 58,02%, 1,46%, 15,79%, 13,39%, 4,36%, 4,13%, dan 0,36%.

Kamis, 04 Oktober 2018

Pembuatan Pupuk Granul Rumput Laut dengan Variasi Kecepatan dan Kemiringan Granulator

Kebutuhan pupuk di Indonesia cenderung mengalami peningkatan setiap tahunnya. Berbagai macam pupuk ada di pasaran baik pupuk kimia maupun organik. Saat ini pupuk organik lebih disukai dibanding dengan pupuk kimia. Hal ini terbukti dengan meningkatnya kebutuhan pupuk organik di masyarakat. Bahan organik dalam pupuk bermanfaat untuk proses penguatan akar dan peningkatan pertumbuhan tanaman sehingga dapat meningkatkan penyerapan nutrisi yang tersedia di dalam tanah.

Salah satu bahan organik yang dapat digunakan dalam pembuatan pupuk adalah rumput laut. Bahan ini kaya kandungan mineral, nutrien anorganik dan bahan organik seperti hormon pemacu tumbuh (sitokininauksin, dan giberelin). Pupuk organik memiliki beberapa macam bentuk seperti tablet, briket, curah, dan granul. Bentuk granul adalah yang paling diminati di pasaran karena bentuk granul lebih mudah diaplikasikan dan mudah meresap ke tanaman. 

Pembuatan pupuk granul berbahan dasar rumput laut telah dilakukan oleh LRMPHP. Rangkaian proses pembuatan pupuk granul rumput laut meliputi pengeringan, penepungan dan pembuatan granul. Peralatan yang digunakan terdiri dari alat penepung, granulator, conveyor dan pengayak (Gambar 1). Untuk menghasilkan pupuk granul yang baik, kecepatan dan kemiringan granulator merupakan salah satu faktor yang berpengaruh. LRMPHP telah melakukan penelitian pembuatan pupuk granul berbahan dasar rumput laut dengan variasi kecepatan dan kemiringan granulator.

Gambar 1. Alat pembuat pupuk granul (penepung, granulator, conveyor, dan pengayak)

Uji coba pembuatan pupuk granul rumput laut dilakukan dengan variasi kecepatan sebesar 40, 50 dan 60 rpm pada bagian piringan granulator dengan kemiringan 150°. Selain itu dilakukan uji coba dengan variasi kemiringan granulator sebesar 90°, 120°, dan 150° dengan kecepatan 60 rpm pada motor selama 1200 detik. Bahan baku yang digunakan berupa rumput laut jenis sargassum sp. yang dikombinasi dengan bahan organik. Hasil uji coba menunjukkan bahwa pada kecepatan 60 rpm dengan kemiringan 90° diperoleh hasil produksi terbaik dengan tingkat penerimaan produk sebanyak 36% (diameter granul 3-4 mm).

Kamis, 20 September 2018

Alat Pengaduk Mekanis untuk Pembuatan Dodol Rumput Laut

Dodol merupakan salah satu jenis makanan tradisional yang termasuk kelompok pangan semi basah. Umumnya dodol bersifat elastis, padat, dan mempunyai kisaran a0,60 - 0,90 serta kadar air 10 - 40%. Dodol terbuat dari bahan dasar yang mempunyai kandungan karbohidrat tinggi seperti tepung ketan. Selain tepung ketan, bahan dasar yang sering digunakan dalam pengolahan dodol adalah rumput laut.

Pengolahan rumput laut menjadi produk dodol telah banyak dilakukan oleh industri rumah tangga dengan menggunakan peralatan sederhana. Permasalahan yang sering dihadapi oleh para pengolah tersebut adalah proses pengadukan yang lama dan masih menggunakan tenaga manusia (manual). Selain itu, bila saat pengolahan menggunakan api terlalu besar atau pengadukan tidak merata maka sebagian adonan akan rusak atau hangus. Oleh karena itu, dalam pengolahan dodol rumput laut diperlukan peralatan untuk mempermudah pengolah dalam pembuatan produk tersebut dengan tidak mengurangi kualitas yang dihasilkan.

Beberapa penelitian telah dilakukan untuk mendapatkan alat pengolah dodol yang efektif. Handoko (1992) merancang alat pengaduk dodol mekanis namun belum menggunakan tangki double jacket sehingga belum bisa mengurangi tingkat kerusakan (hangus) produk. Ardiansyah et al (2013) dan Nugroho et al (2014) melakukan penelitian perancangan dan pembuatan alat pengaduk adonan dodol dengan kecepatan konstan dan torsi adaptif serta pengaturan kecepatan motor DC namun belum diperoleh informasi penggunaannya pada dodol dari rumput laut dan kualitas dodol yang dihasilkan.

LRMPHP telah mengembangkan alat pengaduk mekanis yang didesain menggunakan double layer pada tangki pemasakan dan pengaduk konstan, sehingga diharapkan mampu mempermudah pengadukan saat pengolahan. Metode yang digunakan adalah analisis teknis, perancangan desain, pabrikasi dan pengujian. Hasil rancang bangun mesin pengaduk dodol mekanis tampak pada Gambar 1. Peralatan dibuat menggunakan  bahan  besi hollow 4x4 dan SS 304 dengan dimensi 760 mm x 720 mm x 1410 mm (PxLxT). Tabung wadah bahan baku menggunakan sistem double jacket, kecepatan pengaduk konstan 16 rpm dengan daya 2 HP. 

Gambar 1. Hasil rancang bangun alat pengaduk mekanis

Hasil pengujian alat pengaduk mekanis menunjukkan bahwa alat pengaduk mekanis ini mampu menghasilkan produk dodol rumput laut dengan kapasitas optimal 50 kg bahan baku (E. cottonii), rendemen 73.77%, tingkat kerusakan produk akibat hangus 0.06%, kapasitas efektif alat 12.5 kg/jam dan kebutuhan bahan bakar gas selama pemasakan 4 jam adalah 1.78 kg. Sedangkan kualitas dodol yang di hasilkan memiliki tekstur 8.62 (g/mm2), kadar air 68.80 (%) dan kadar abu 2.80 (%).

Sumber : Semnaskan Hasil Penelitian UGM 2015

Jumat, 14 September 2018

Aplikasi Gum Arab dan Dekstrin Sebagai Bahan Pengikat Protein Ekstrak Kepala Udang

Udang merupakan komoditas perikanan yang diandalkan pemerintah untuk menghasilkan devisa negara. Ekspor udang pada tahun 2011 mencapai 153.000 ton, hampir 90% udang tersebut diekspor dalam bentuk beku, tanpa kulit dan kepala. Oleh karena itu jumlah hasil samping (bagian yang terbuang) dari industri pembekuan udang tersebut cukup besar. Hasil samping dari pengolahan udang beku berupa kepala udang yang tidak digunakan mencapai 30–40%. Beberapa jenis pemanfaatan kepala udang yang biasa dilakukan antara lain sebagai pakan ternak, petis, silase dan terasi, namun cara-cara tersebut belum bisa meningkatkan nilai ekonomisnya.

Kepala udang kaya akan protein yang dapat digunakan sebagai bahan fortifikan pada makanan dan minuman. Protein berperan penting dalam tubuh manusia untuk menjaga kekebalan tubuh, membantu dalam proses penyembuhan luka, regenerasi sel hingga mengatur kerja hormon dan enzim dalam tubuh. Hingga saat ini pemanfaatan kepala udang sebagai sumber protein untuk pangan sebagian besar dilakukan dengan proses hidrolisis secara enzimatis, namun metode tersebut memerlukan biaya yang cukup besar dan ketelitian yang tinggi. Pemanfaatan kepala udang sebagai sumber protein tanpa proses enzimatis dapat dilakukan menggunakan proses asam basa dengan metode isoelektrik maupun dengan metode mekanis. Ekstraksi protein dari kepala udang dengan metode mekanis dapat dimodifikasi dengan tujuan mendapatkan jenis-jenis protein yang larut dalam air (protein polar). Hasil ekstraksi (ekstrak) kepala udang bisa dalam bentuk bubuk atau cairan.

Untuk suplementasi protein, ekstrak dalam bentuk bubuk memiliki beberapa kelebihan dibandingkan dalam bentuk cairan karena lebih mudah disimpan dan tidak mudah terkontaminasi. Bubuk ekstrak kepala udang juga mempunyai daya larut yang tinggi sehingga mudah ditambahkan ke dalam makanan atau minuman yang akan disuplementasi. Dalam pembuatan bubuk dari suatu cairan dibutuhkan bahan pengisi yang berfungsi juga sebagai bahan pengikat yang disebut binding agent atau binder.

Berdasarkan beberapa penelitian terdahulu diketahui bahwa gum arab dapat diaplikasikan sebagai binding agent bahan pangan maupun bahan obat. Selain itu gum arab bersifat sebagai emulsifier sehingga bahan yang telah diproses dengan penambahan gum arab akan mudah dilarutkan dalam air maupun minyak. Sementara itu dekstrin dapat digunakan sebagai bahan enkapsulasi senyawa volatile dan minyak, sehingga dapat melindungi senyawa yang peka terhadap oksidasi atau panas, karena molekul dari dekstrin stabil terhadap panas dan oksidasi. Oleh karena itu, penggunaan gum arab dan dekstrin pada ekstrak kepala udang diharapkan mampu menjadi bahan pengikat protein yang baik dan melindunginya dari proses panas saat pengeringan maupun proses berikutnya. 

LRMPHP telah melakukan penelitian tentang gum arab dan dekstrin sebagai bahan pengikat protein terlarut ekstrak kepala udang, yang nantinya bisa digunakan sebagai bahan dasar suplementasi protein. Tujuan penelitian ini adalah untuk mendapatkan proporsi terbaik dari penambahan gum arab dan dekstrin pada pembuatan bubuk protein sebagai bahan suplementasi nutrisi. Gum arab dan dekstrin yang ditambahkan sebanyak 8% (b/v), dengan empat perlakuan proporsi yang berbeda yaitu 1:0,5; 1:1,75; 1:3; dan 1:4,25. Parameter yang diamati untuk mengetahui sifat fisika dan kimia hasil ekstraksi meliputi kadar nitrogen terlarut, kadar nitrogen amino, kadar nitrogen non protein, kadar protein kasar, kadar air, kelarutan, dan rendemen. Hasil penelitian menunjukkan bahwa perlakuan terbaik adalah penambahan gum arab dan dekstrin dengan perbandingan 1:0,5. Produk memiliki kadar nitrogen terlarut 0,55%, kadar nitrogen amino 2,35%, kadar nitrogen non protein 2,62%, kadar protein kasar 33,20%, kadar air 5,67%, kelarutan 99,15% dan rendemen 5,04%. Produk ini memenuhi kebutuhan jenis asam amino yang disyaratkan ada pada pangan anak usia 10–14 tahun yang di tetapkan oleh FAO. Produk ini juga memiliki sifat kelarutan yang bagus sebagai bubuk karena kelarutannya diatas 95%.

Sumber : Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan

Jumat, 07 September 2018

Mesin Pencacah dan Penggiling Rumput Laut Sistem Berkelanjutan

Rumput laut merupakan salah satu produk unggulan kelautan di Indonesia. Pengembangan industri rumput laut di Indonesia memiliki prospek yang baik. Hal ini disebabkan teknik pembudidayaan rumput laut yang relatif mudah dan permintaan terhadap rumput laut serta produk olahannya cukup banyak. Dengan meningkatnya permintaan rumput laut tersebut maka dibutuhkan proses pengolahan yang optimal. Salah satu tahapan pengolahan rumput laut adalah dengan menghancurkan dan menghaluskan rumput laut sehingga mempermudah proses pengolahan lebih lanjut. Peralatan yang digunakan dalam proses tersebut adalah alat pencacah dan penggiling.

Saat ini alat pencacah dan penggiling rumput laut biasanya dijual terpisah di pasaran, sehingga untuk mengolah rumput laut mulai proses pencacahan hingga penggilingan memerlukan bantuan operator. Hal ini menyebabkan waktu pengolahan rumput laut menjadi lebih lama. Untuk itu diperlukan mesin pencacah dan penggiling yang memiliki sistem berkelanjutan sehingga menjadi lebih efisien .

LRMPHP telah melakukan penelitian rancang bangun mesin pencacah dan penggiling rumput laut sistem berkelanjutan. Hasil penelitian ini telah dipublikasikan dalam Seminar Nasional Tahunan XIII Hasil Penelitian Perikanan dan Kelautan, 2016 di UGM. Rancangan mesin pencacah dan penggiling rumput laut sistem berkelanjutan  (Gambar 1.) memiliki konsep pemrosesan yaitu rumput laut dimasukkan melalui hopper lalu dicacah menggunakan pisau dan hasil cacahannya dikecilkan menggunakan penggiling. 

  
Gambar 1. Mesin pencacah dan penggiling rumput laut sistem berkelanjutan rancangan LRMPHP
Adapun spesifikasi alat rancangan LRMPHP dan hasil uji performansinya dapat dilihat pada Tabel 1 dan 2.
Tabel 1. Spesifikasi alat pencacah rumput laut sistem berkelanjutan
Mesin Pencacah dan Penggiling
Sistem
Cacah dan giling, continue
Spesifikasi
PxLxT : 90 x 80 x 125 (cm)

Motor Pencacah : 5.3 HP, 3 Phase

Motor Penggiling : 5.3 HP, 3 Phase
  
Tabel 2. Hasil uji mesin pencacah dan penggiling rumput laut sistem berkelanjutan

No.
Rumput laut
Berat awal (kg)
Waktu total mencacah (menit)
Berat akhir tercacah (kg)
1
Sargassum
29.94
39
22.42
2
Sargassum
33.28
40
26.12
3
E.cottonii
31.14
10
30.78
4
E.cottonii
31.74
11
29.07

Berdasarkan hasil uji performansi tersebut maka mesin pencacah dan penggiling rumput laut sistem berkelanjutan rancangan LRMPHP berjalan dengan baik. Kapasitas produksinya sebanyak 48 kg/jam untuk rumput laut jenis Sargassum dan  180 kg/jam untuk E.cottonii