EKONOMI BIRU

Arah Kebijakan Pembangunan Sektor Kelautan dan Perikanan 2021 - 2024 Berbasis EKONOMI BIRU

ZI WBK? Yes, We CAN

LRMPHP siap meneruskan pembangunan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) yang telah dimulai sejak tahun 2021. ZI WBK? Yes, We CAN.

LRMPHP ber-ZONA INTEGRITAS

Loka Riset Mekanisasi Pengolahan Hasil Perikanan siap menerapkan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) 2021.

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Produk Hasil Rancang Bangun LRMPHP

Lebih dari 30 peralatan hasil rancang bangun LRMPHP telah dihasilkan selama kurun waktu 2012-2021

Kerjasama Riset

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Kanal Pengelolaan Informasi LRMPHP

Diagram pengelolaan kanal informasi LRMPHP

Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan
Tampilkan postingan dengan label Publikasi. Tampilkan semua postingan

Rabu, 14 Juli 2021

LRMPHP KEMBANGKAN MESIN PENCACAH TULANG IKAN UNTUK MENDUKUNG PAKAN IKAN MANDIRI

Tepung ikan merupakan salah satu komoditas penting perikanan di Indonesia. Kebutuhan tepung ikan di Indonesia sangat besar dan cenderung mengalami peningkatan setiap tahun. Namun sebagian besar kebutuhan tepung ikan tersebut dipenuhi dari impor. Kebutuhan tepung ikan ini sebagian besar digunakan untuk bahan baku pakan ikan. Salah satu upaya untuk mengurangi kebutuhan impor adalah memanfaatkan berbagai jenis ikan rucah dan sisa olahan ikan berupa tulang dan kepala ikan sebagai bahan baku tepung ikan. 

Permasalahan yang dihadapi pada pengolahan tulang ikan adalah proses pencacahan menjadi ukuran yang lebih kecil. Hal ini disebabkan karena bahan baku berasal dari tulang atau kepala ikan yang memiliki tekstur keras dan berukuran besar. Oleh karena itu diperlukan mesin yang mampu mencacah tulang ikan yang memiliki tekstur keras.

Berdasarkan latar belakang tersebut pada tahun 2015 Loka Riset Mekanisasi Pengolahan Hasil Perikanan (LRMPHP) melakukan penelitian, rancangbangun dan uji kinerja mesin pencacah tulang dan kepala ikan yang merupakan rangkaian dari penelitian dan rancangbangun alat pembuatan tepung ikan. Tujuan penelitian dan rancangbangun adalah untuk merancang dan membuat mesin pencacah tulang ikan serta melakukan pengujian kinerja.

Mesin pencacah tulang ikan yang dirancangbangun ini mengadopsi mesin shredder untuk mencacah sampah plastik pada proses daur ulang plastik dalam manajemen sampah plastik dan juga biasanya digunakan untuk mencacah sampah botol plastik. Mesin pencacah bekerja berdasarkan mekanisme kerja poros berputar yang dilengkapi dengan sepasang roda gigi untuk memutar sepasang mata pisau dengan sumber penggerak berupa motor listrik 2 HP. Pisau berputar saling berlawanan ke arah dalam secara sinergis untuk mencacah bahan sehingga diperoleh ukuran cacahan yang lebih kecil. Arah putaran dan bentuk pisau yang meruncing ke dalam menyebabkan material yang akan dicacah tertarik dan masuk di celah antara dua mata pisau. Spesifikasi umum mesin pencacah yaitu mesin tipe berkelanjutan, menggunakan motor listrik 2 HP 3 phase dengan dimensi panjang total 1500 mm, lebar 320 mm dan tinggi 1200 mm. Bentuk mata pisau dan konstruksi alat seperti disajikan pada gambar 1. Mesin pencacah hasil rancangbangun seperti disajikan pada gambar 2.



Gambar 1. a) Bentuk mata pisau, b) Konstruksi alat

Gambar 2. Mesin pencacah tulang dan kepala ikan hasil rancangbangun LRMPHP

Hasil uji kinerja diperoleh bahwa mesin bekerja optimal pada frekuensi inverter 50,0 Hz dengan kapasitas 278,69 kg/jam. Kapasitas tersebut belum mencapai kapasitas yang ditentukan pada kriteria desain yaitu 500 kg/jam. Supaya mesin dapat mencapai kapasitas yang diharapkan maka perlu dilakukan beberapa modifikasi. Modifikasi untuk meningkatkan kapasitas adalah dengan menambah daya motor menjadi lebih besar sehingga menghasilkan torsi yang lebih besar dan menggunakan rasio gear reduction yang lebih kecil sehingga putaran mesin akan meningkat. Konsekuensinya adalah daya listrik yang dibutuhkan untuk operasional akan lebih besar.


Penulis : Wahyu Tri H. - LRMPHP

Senin, 12 Juli 2021

"PHASE CHANGE MATERIALS" Novel Teknologi Dalam Mesin Pendinginan Ikan

Aplikasi PCM pada cool box (A), dalam freezer (B), dan dalam palka kapal (C)

Beberapa tahun terakhir penelitian Thermal Storage Energy (TES) untuk mengatasi permasalahan dalam sistem refrigerasi masif dilakukan oleh para ahli refrigerasi. TES adalah teknik untuk menyimpan energi panas maupun dingin kemudian bisa digunakan pada waktu mendatang. Energi yang disimpan dalam TES bisa berupa sensible heat, latent heat dan thermo-chemical heat. Namun energi dari latent heat dinilai lebih unggul dibandingkan sumber lain.

Dalam kerjanya TES membutuhkan material atau bahan yang sesuai sehingga latent heat/panas laten bisa disimpan dan dilepas pada kondisi yang diharapkan. Bahan tersebut disebut Phase Change Materials (PCM). PCM adalah jenis bahan yang mampu menyimpan panas laten melalui proses solidifikasi maupun pelelehan. Bahan menyimpan panas laten ketika berubah fasa dari padat ke cair, ataupun dari cair ke padat, kemudian bahan ini akan melepaskan panas laten ketika fasa berubah sebaliknya. Panas laten pada saat material ditransfer dari perubahan padat ke cair atau dari cair ke padat disebut perubahan fasa.

Peneliti Loka Riset Mekanisasi Pengolahan Hasil Perikanan (LRMPHP), telah melakukan penelitian penggunaan PCM dalam penyimpanan ikan disuhu rendah. Pertama aplikasi PCM air dalam circular pipe aluminium pada cool box sebagai wadah transportasi ikan. Penggunaan PCM sebanyak 500 ml mampu menghasilkan suhu ruang cool box lebih rendah 5 o dan suhu ikan yang disimpan lebih rendah 2,5 oC, dibandingkan penggunaan es curai sebanyak 1 kg selama 5 jam penyimpanan. Keunggulan lain ialah PCM dapat digunakan berulang kali dengan membekukannya lagi setelah mencair.

Kedua, aplikasi PCM berupa minyak jagung untuk mempercepat laju pembekuan dan meminimalkan fluktuasi suhu freezer dalam proses penyimpanan ikan tuna. Minyak jagung sebanyak 3.6 liter dikemas dalam slab stainless 470 x 370 x 10 mm3 diletakkan pada dinding cabinet freezer berukuran 830 x 600 x 820 mm3. Diperoleh laju penurunan suhu ikan pada freezer PCM lebih cepat dibandingkan pada freezer tanpa PCM. Untuk mencapai suhu -5 o lebih cepat 3 jam, sedangkan untuk mencapai -15 o lebih cepat 2 jam. Kualitas tuna beku yang dihasilkan dari freezer PCM mempunyai nilai thawing loss lebih rendah dibandingkan freezer tanpa PCM baik di posisi bawah, tengah dan atas cabinet freezer

Ketiga, aplikasi PCM dalam palka penyimpan ikan dikapal penangkap ikan. PCM dipasang pada dinding palka berdampingan dengan pipa evaporator. PCM berupa paraffin cair RT0 dimasukkan ke dalam pipa galvanis diameter 1 inchi dengan panjang total 90 meter, sehingga mampu menampung 45.6 liter. Tujuannya adalah untuk menjaga agar fluktuasi suhu udara dalam palka tidak terlalu tinggi serta diperoleh penurunan konsumsi daya saat mesin pendingin beroperasi. Hasil penelitian, saat palka berisi 75% beban dan mesin pendingin dimatikan, palka dengan PCM mampu mempertahankan suhu 0 o lebih lama 3 jam dibandingkan palka tanpa PCM sehingga bisa menghemat penggunaan BBM mesin refrigerasi sebanyak 15-17 liter. 

Berdasarkan uraian diatas bisa disimpulkan bahawa PCM sebagai bahan penyimpan energy panas laten bisa dimanfaatkan untuk proses penyimpanan ikan baik dalam proses pendinginan maupun pembekuan. Aplikasi PCM pada cool box/penyimpan ikan portable dapat menjaga suhu rendah lebih lama dibandingkan dengan penambahan es curai. Aplikasi PCM pada freezer dapat mempercepat proses pembekuan ikan dan mengurangi thawing loss. Dan aplikasi PCM pada palka penyimpan ikan di kapal perikanan bisa menurunkan operasi mesin pendingin hingga 3 jam dalam tiap hari.  


Penulis : Arif Rahman Hakim - LRMPHP

           










Selasa, 18 Mei 2021

Metode dan Teknologi Menghitung Benih Ikan

Ilustrasi (sumber : https://matabanua.co.id/)

Potensi sektor perikanan budidaya di Indonesia cukup besar, bahkan berdasarkan siaran pers KKP untuk tahun 2021 target produksi sekitar 19,47 juta ton yang terdiri dari ikan sebesar 7,92 juta ton dan rumput laut 11,55 juta ton, yang naik 1,03 juta ton dari target produksi tahun 2020 yaitu 18,44 juta ton. Disamping produksi ikan konsumsi, target lain pada tahun 2021 adalah produksi Ikan hias.

Target produksi perikanan yang besar tersebut seharusnya didukung dengan teknologi akuakultur yang baik supaya target tersebut dapat tercapai. Salah satu kendala yang dialami para pembudidaya ikan adalah perhitungan benih ikan karena masih menggunakan metode manual atau takaran. Berdasarkan informasi dari IKANPEDIA Metode yang banyak digunakan yaitu dengan menghitung manual atau menggunakan takaran yang membutuhkan waktu yang lama dan hasilnya tidak akurat. Metode menghitung manual biasanya digunakan untuk menghitung bibit dalam jumlah yang tidak terlalu banyak. Meskipun membutuhkan waktu yang lama, tetapi metode ini terbilang cukup akurat. Metode yang kedua yaitu menggunakan takaran gelas. Umumnya metode ini digunakan untuk menghitung jumlah benih ikan yang banyak. Metode ini lebih cepat dan efektif, tetapi tingkat akurasinya belum pasti. Metode yang ketiga yaitu menggunakan timbangan. Metode ini  mirip dengan metode takarang menggunakan gelas hanya saja takarannya dikonversi menjadi berat. Untuk kecepatan dan efisiensi metode ini cukup baik tetapi untuk akurasi masih belum pasti.

Sebenarnya teknologi perhitungan benih ikan sudah dikembangkan, bahkan sudah diproduksi dan digunakan oleh sebagian kalangan. Salah satu teknologi atau alat yang digunakan adalah Fry Counter. Teknologi ini salah satunya dikembangkan oleh Calitri Technology seperti disajikan pada gambar 1. Metode yang digunakan pada alat ini adalah melewatkan ikan melalui beberapa saluran atau channel dan dideteksi menggunakan sensor infrared pada tiap saluran. Hasil deteksi oleh sensor infrared kemudian diolah secara mikrokontroller dan hasilnya ditampilkan di monitor.  Bahkan selain untuk menghitung benih alat ini juga sudah dikembangkan untuk menghitung ikan dengan memberikan spesifikasi alat berdasarkan ukuran ikan yang akan dihitung.

Gambar 1. Fry Counter yang dikembangkan oleh Calitri Technology (sumber : https://www.calitri-technology.com)
IPB juga sudah melakukan pengembangan alat sejenis dan sudah dipublikasikan bahkan sudah dipatenkan. Alat seperti disajikan pada gambar 2. Alat ini secara prinsip hampir sama dengan Calitri Technology. Berdasarkan sumber dari teknologi-kelautan.com prinsip kerja alat ini yaitu  benih ikan dimasukkan kedalam wadah yang berisi air selanjutnya ikan akan masuk kedalam saluran atau trek yang terdiri dari 8 saluran dan dideteksi oleh sensor opto interruptor. Hasil deteksi sensor diolah menggunakan mikrokontroller yang selanjutnya ditampilkan di monitor.
Gambar 2. Fry Counter yang dikembangkan oleh IPB (sumber : https://ipb.ac.id/news)
Teknologi lain alat penghitung benih yang sudah dikembangkan adalah menggunakan metode pengolahan citra atau Image Processing yang saat ini sangat potensial karena mudah penggunaannya, hasilnya cepat mendekati real time dan akurat. Pengembangan teknologi ini salah satunya telah dikembangkan oleh A. Rahmadiansah et al. yang disampaikan dalam International Conference on Mathematics (2018). Gambar konsep alat seperti disajikan pada gambar 3. Dalam penelitiannya dikembangkan sensor pengolah citra yaitu menggunakan kamera. Kamera akan menangkap gambar benih ikan yang melewati sensor kamera. Kemudian informasi berupa gambar dari kamera diolah untuk dapat dihitung. Tahap pemrosesan citra yang dilakukan yaitu segmentation, filtering, morphology dan fish seeds calculation. Berdasarkan pengujian akurasi, alat yang telah dirancang mampu menghasilkan nilai rata-rata error terkecil 1,0% pada 300 bibit ikan.

Gambar 3. Konsep alat penghitung benih ikan menggunakan image processing (sumber : A. Rahmadiansah et al. dalam International Conference on Mathematics (2018) 


Penulis : Wahyu Tri H - LRMPHP

Senin, 15 Maret 2021

Potensi Teknologi Penyimpanan Energi Flywheel untuk Bidang Perikanan

Sumber : https://clutch-specialists.co.uk/

Kebutuhan sistem pendinginan pada bidang perikanan sangat diperlukan guna menunjang sistem rantai dingin. Oleh karena itu alat pendingin di kapal perikanan dan di TPI atau pelabuhan perikanan sangat diperlukan. Kendala yang sering dihadapi adalah kebutuhan energi untuk mensuplai sistem pendingin tersebut masih terbatas karena lokasi yang berada di lautan dan jaringan PLN yang masih terbatas. Oleh karena itu diperlukan sumber energi alternatif yang bisa membantu mensuplai kebutuhan energi tersebut. Salah satu potensi yang bisa digunakan adalah sistem penyimpanan energi flywheel yang digabungkan dengan sumber energi lainnya.

Flywheel atau sering disebut sebagai roda gaya atau roda gila adalah komponen yang digunakan pada mesin kendaraan roda empat. Fungsi flywheel dalam kendaraan digunakan untuk menstabilkan putaran mesin. Hal ini karena Struktur flywheel berbentuk cakram, karena beratnya dapat menahan perubahan kecepatan yang cepat, sehingga putaran poros mesin menjadi lebih stabil. Flywheel dapat menyimpan energi dalam massa yang berputar yang besarnya bergantung pada inersia dan kecepatan massa yang berputar.

Karakteristik flywheel yang dapat menyimpan energi tersebut telah dikembangkan sebagai salah satu potensi sumber energi. Dalam artikel Gravity Energy Storage disampaikan bahwa penyimpanan energi flywheel dianggap sebagai teknologi yang sangat menarik dan merupakan salah satu metode penyimpanan mekanis paling awal. Penyimpanan energy pada flywheel menggunakan energi kinetik sebagai bentuk penyimpanan. Bahkan menurut menurut Chen H. et al. yang disampaikan dalam Natural Science (2009) teknologi flywheel ini memiliki efisiensi tinggi dan biasanya berkisar antara 90-95 %. Pullen K.R. dalam Joule 3 juga menyatakan bahwa karakteristik flywheel yang kuat sangat sesuai untuk aplikasi yang membutuhkan respons cepat dan siklus harian yang tinggi dan terus berkembang.

Penelitian dan aplikasi penggunaan flywheel sebagai penyimpan dan sumber energi telah banyak dilakukan. Salah satunya dilakukan oleh Bolund. et al dalam Renewable and Sustainable Energy Reviews (2007) melakukan uji coba penerapan flywheel sebagai energi dan penyimpanan daya. Uji coba yang dilakukan adalah mengaplikasikan flywheel sebagai sumber energi tambahan generator listrik. Uji coba dilakukan dengan meletakkan flywheel di dalam penampung vakum untuk menghilangkan gesekan udara. Energi kinetik ditransfer masuk dan keluar dari flywheel dengan mesin listrik yang dapat berfungsi sebagai motor maupun generator, tergantung pada sudut beban (sudut fasa). Saat bertindak sebagai motor, energi listrik yang disuplai ke stator diubah menjadi torsi dan diterapkan ke rotor yang menyebabkan perputaran lebih cepat sehingga mendapatkan energi kinetik. Dalam mode generator, energi kinetik yang disimpan di rotor menerapkan torsi, yang diubah menjadi energi listrik. Gambaran sistem penyimpanan energi flywheel seperti disajikan pada gambar 1. Hasil uji coba menunjukkan bahwa putaran rotor flywheel yang cepat mampu digunakan untuk pembangkitan langsung listrik tegangan tinggi. Oleh karena itu aplikasi flywheel dengan komponen utama motor / generator memiliki potensi yang besar untuk ditingkatkan.

Gambar 1. Sistem penyimpanan energi flywheel (sumber : Flywheel Energy Systems Inc. CETC-0100-01 Rev.2)

Istilah yang umum digunakan pada teknologi penyimpanan energi flywheel adalah Flywheel Energy Storage System (FESS). Menurut Amiryar & Pullen yang disampaikan dalam Apllied Sciences (2017) mengemukakan bahwa Teknologi FESS ini menawarkan karakteristik unik dan memiliki siklus yang sangat tinggi dengan masa pakai yang lama. Selain itu juga memiliki kemampuan daya tinggi, respon instan, dan kemudahan daur ulang. Saat ini permintaan teknologi FESS berkembang secara substansial, dan memiliki potensi yang cukup baik, bahkan disaat biaya produksi baterai Li-ion dan teknologi baterai kimia lainnya terus berkurang.

Aplikasi teknologi FESS yang sudah dilakukan biasanya menggunakan sistem hybrid, yaitu menggabungkan dengan sumber energi lainnya. Pada bidang perikanan teknologi tersebut berpotensi bisa diaplikasikan untuk sistem pendingin pada palkah ikan yang digabungkan dengan energi dari genset. Untuk cool storage di darat juga bisa memanfaatkan teknologi tersebut yang digabungkan dengan penggunaan listrik PLN. Skema penggunaan teknologi FESS sebagai sumber energi pada sistem pendingin seperti disajikan pada gambar 2.

Gambar 2. Skema aplikasi teknologi FESS untuk sistem pendingin (sumber : https://www.mdpi.com/journal/sustainability)


Penulis : Wahyu Tri Handoyo

Rabu, 10 Maret 2021

LRMPHP Kembangkan Alat Pengering Rumput Laut Tenaga Gelombang Mikro

Alat pengering rumput laut microwave energy inovasi LRMPHP

Pengeringan rumput laut menggunakan sinar matahari banyak dilakukan oleh para pembudidaya dan pengolah rumput laut karena metode ini relatife mudah dan murah. Namun metode ini memiliki beberapa kelemahan diantaranya membutuhkan waktu proses yang lama, tergantung dengan cuaca dan terjadi penurunan kualitas.

Saat ini penggunaan teknologi gelombang mikro dalam pengolahan produk pangan mengalami perkembangan pesat termasuk untuk proses pengeringan. Pengeringan menggunakan energi gelombang mikro (microwave energy) dilaporkan oleh banyak penelitian lebih efisien dan mampu mempercepat proses pengeringan.

LRMPHP saat ini telah berhasil mengembangkan alat pengering rumput laut memanfaatkan microwave energy. Prinsip dari proses pengeringan microwave adalah pengeringan secara volumetric yaitu memanaskan inti material dalam suatu bahan terlebih dahulu kemudian merambat ke permukaan bahan. Microwave menghasilkan energi radiasi non ionik, yang menyebabkan gerakan molekuler melalui rotasi dipol (kutub) dan menghasilkan gesekan antar molekul sehingga terjadi panas akibat gesekan tersebut. Microwave sendiri adalah salah satu gelombang elektromagnetik, dengan interval panjang gelombang antara 1 mm hingga 1 m dan interval frekuensi antara 300 MHz dan 300 GHz. Pada umumnya frekuensi yang digunakan dalam industri pengolahan pangan sebesar 915 dan 2450 MHz.

Rancangbangun alat pengering rumput laut microwave energy inovasi LRMPHP

Alat pengering rumput laut microwave energy hasil rancangbangun LRMPHP terdiri dari beberapa komponen utama meliputi 1. cavity sebagai ruang pengeringan, 2. sistem sirkulasi udara yang berfungsi mengeluarkan uap air bahan, 3. sistem pengering berupa magnetron dan waveguide serta 4. sistem kontrol untuk mengatur tingkat intensitas microwave, waktu proses dan keluar masuk bahan. Dimensi alat pengering adalah 2410 (panjang) x 270 (lebar) x 210 (tinggi) mm dan mampu menampung rumput laut basah hingga 10 kg, dengan laju pengeringan sebesar 30.29 g/menit, specific energy consumption 3.96 MJ/kg H2O dan efisiensi energy 61.10%. 

Penulis : Arif Rahman Hakim – Peneliti LRMPHP


Selasa, 17 November 2020

UJI KINERJA REFRIGERATOR DC SEBAGAI MESIN PEMBUAT ES MENGGUNAKAN TENAGA SURYA

Ilustrasi, sumber : https://news.energysage.com/solar-panels-work/

Salah satu kendala yang dihadapi oleh para nelayan kecil di daerah pesisir adalah jumlah pasokan es yang terbatas untuk penanganan ikan segar hasil tangkapan. Hal ini disebabkan pasokan listrik PLN untuk pembangunan pabrik es mini masih kurang sehingga suplai es harus diperoleh dari lokasi yang jauh. Menurut Rahmi, et al. dalam Fisika Berkala (2015) menyatakan bahwa sulitnya akses pelayanan dan pemasangan jaringan listrik di daerah sekitar pesisir menjadi salah satu penyebabnya. Oleh karena itu diperlukan alternatif energi terbarukan yang mudah diaplikasikan di daerah pesisir, salah satunya yaitu energi matahari.

Tsalikis & Martinopoulos dalam Solar Energy (2015) menyampaikan bahwa pemanfaatan energi matahari saat ini sangat banyak digunakan, dan pemanfaatannya dapat berupa panas (solar thermal) atau mengubahnya menjadi listrik (photovoltaic) melalui panel surya. Panel surya merupakan sumber energi yang bersih, ramah lingkungan, aman dan andal.

Pada umumnya aplikasi panel surya di Indonesia digunakan sebagai sumber energi untuk peralatan listrik arus AC. Di sisi lain, output panel surya adalah listrik arus DC sehingga membutuhkan inverter untuk mengubah arus listrik DC menjadi AC. Penggunaan inverter tersebut menyebabkan terjadi kerugian konversi. Menurut Jain, et al. dalam IOSR-JEEE (2017) menjelaskan bahwa kerugian-kerugian konversi terjadi pada inverter karena pada dasarnya inverter sendiri merupakan beban yang dapat mengkonsumsi daya berupa standby power consumption. Selain itu penggunaan inverter juga akan menambah kompleksitas rangkaian sistem panel surya. Oleh karena itu penggunaan peralatan DC yang langsung terhubung dengan output panel surya diharapkan dapat meningkatkan efisiensi dan mengurangi kompleksitas. Peralatan DC yang terhubung langsung dengan ouput panel surya dapat diaplikasikan pada refrigerator menggunakan kompresor DC yang bisa berfungsi sebagai mesin pembuat es. Di sisi lain, penelitian tentang refrigerator DC menggunakan sumber energi dari panel surya dengan karakteristik cuaca di Indonesia belum dilakukan.

Berdasarkan uraian diatas pada tahun 2017 LRMPHP melakukan penelitian tentang penggunaan DC refrigerator menggunakan energi tenaga surya sebagai mesin pembuat es. Tujuan penelitian ini adalah untuk mengetahui kinerja refrigerator DC menggunakan tenaga surya yang meliputi pengujian daya input refrigerator, penurunan suhu ruang refrigerator, beban pendinginan dan COP sistem. Uji kinerja dilakukan dengan sistem tanpa beban dan menggunakan beban. Pengujian dilakukan selama 8 jam yaitu pukul 08.00 - 16.00 WIB setiap harinya. Data yang diperoleh dianalisis sehingga didapatkan nilai daya output panel surya, daya refrigerator DC, kerja refrigerator dan COP sistem. 

Hasil pengukuran dan analisis data menunjukkan bahwa daya output panel surya pada bulan September dan Oktober dapat memenuhi kebutuhan daya refrigerator DC baik tanpa beban maupun menggunakan beban. Daya output rata-rata panel surya yang diperoleh pada bulan Oktober lebih besar daripada bulan September. Konsumsi daya refrigerator DC saat menggunakan beban yaitu 68,74 watt, nilai ini lebih besar daripada saat tanpa beban yaitu 60,94 watt. Selain itu, pada pengujian menggunakan beban, penurunan suhu ruang refrigerator jauh lebih lama dibandingkan dengan tanpa beban. Hal ini disebabkan karena beban pendinginan pada saat pengujian menggunakan beban menjadi lebih besar. Hasil uji coba juga menunjukkan rata-rata COP sistem yaitu 0,96 dan rata-rata berat es yang dihasilkan sekitar 43,71% dari berat air.

Penulis : Wahyu Tri Handoyo - LRMPHP 

Jumat, 24 April 2020

MENGENAL IKAN INVASIF DI PERAIRAN INDONESIA


Sumber : https://oceanconservancy.org/blog/2016/02/24/the-oceans-least-wanted-4-invasive-species-to-know/
Indonesia memiliki kekayaan jenis ikan yang melimbah. Berdasarkan data Kementerian Kelautan dan Perikanan (KKP) terdapat sedikitnya 4.720 jenis ikan baik tawar maupun laut di perairan Indonesia.

Saat ini kekayaan jenis ikan di Indonesia mengalami ancaman yang cukup serius yang disebabkan karena pembukaan lahan dan alih fungsi, pencemaran perairan dan sebab lainnya yang berdampak pada penurunan kualitas habitat ikan yang menyebabkan penurunan populasi. Selain itu keberadaaan berbagai jenis spesies ikan invasif asing juga menjadi ancaman serius bagi perairan Indonesia. Jika tidak dilakukan upaya pengendalian, keberadaan spesies ini mengancam kekayaan perairan, termasuk memusnahkan spesies lokal. Di sebagian daerah, spesies lokal sudah benar-benar terdesak. Sebagai contoh adalah spesies ikan Arapamia gigas yang beberapa tahun lalu menjadi polemik karena keberadaannya mengancam spesies ikan lokal di perairan Indonesia.

Spesies invasif merupakan makhluk hidup yang masuk/dimasukkan ke ekosistem baru, lalu menguasai ekosistem itu. Menurut IUCN dalam Redlist of Threatened Spesies, spesies asing invasif adalah spesies asing yang mampu membentuk diri mereka pada ekosistem alami atau ekosistem semi alami, sebagai awal perubahan dan mengancam keanekaragaman hayati lokal/asli. Menurut Umar C. dalam Jurnal Kebijakan Perikanan Indonesia (2015) menyatakan bahwa Keberadaan jenis invasif berdampak pada terganggunya kelangsungan hidup ikan asli suatu perairan yang memiliki nilai ekonomis, yaitu terjadi penurunan keanekaragaman hayati seiring dengan semakin berkurangnya beberapa jenis ikan lokal. Populasi jenis ikan asli atau endemik di beberapa perairan Indonesia mengalami penurunan yang disebabkan oleh masuknya ikan asing. Populasi ikan endemik yang terancam punah seperti dilaporkan oleh Sukmono et. al. dalam Jurnal Iktiologi Indonesia (2013) adalah ikan lais kaca (Kryptoperus minor), ikan parang-parang bengkok (Macrochirichtys marcrochirus), dan ikan sepat mutiara (Trichopodus leerii), serta ikan ridiangus (Balantiocheilos melanop-terus) yang terdapat di perairan Hutan Harapan di Jambi.

Beberapa penelitian terkait ancaman ikan invasif di beberapa perairan local Indonesia juga sudah dilakukan. Penelitian yang dilakukan oleh Sentosa, A. A. & Wijaya, D. dalam Jurnal Bawal Vol. 5 (2013) yang menyatakan bahwa berdasarkan aspek biologi ikan zebra memiliki potensi sebagai ikan asing invasif yang cukup tinggi di Danau Beratan yang disertai dengan kemampuan adaptasi yang baik. Penelitian oleh Hadiaty, R.K. yang disampaikan dalam Jurnal Iktiologi Indonesia (2011) menyampaikan bahwa ada 86 spesies ikan yang dulu hidup di danau-danau daerah aliran Sungai Cisadane, namun saat ini hanya dijumpai 24 spesies, yang menunjukkan bahwa laju kehilangan spesiesnya sekitar 72,1%. Penelitian lain yang dilakukan oleh Prianto E. et al yang dimuat dalam Jurnal Kebijakan Perikanan Indonesia (2016) menyampaikan bahwa keberadaan ikan introduksi yang bersifat invasive (alien invasive fish species) telah menjadi permasalahan utama bagi pengelolaan perikanan perairan umum daratan di Indonesia khususnya di komplek Danau Malili. Populasi ikan asing invasive telah memasuki hampir seluruh perairan komplek Danau Malili dan mendominasi. Beberapa penelitian tersebut menunjukkan bahwa spesies ikan invasif sudah banyak masuk ke perairan local dan telah mengancam keberadaan ikan endemic perairan tersebut. Oleh karena itu perlu dilakukan pencegahan untuk menjaga kekayaan jenis ikan di Indonesia.

Tindakan pencegahan dan penanggulangan ikan invasif saat ini telah dilakukan oleh pemerintah melalui kebijakan yang diterbitkan oleh Kementerian Kelautan dan Perikanan yaitu melalui Undang-undang nomor 32 tahun 2004 tentang perikanan yang telah diubah menjadi Undang-undang nomor 45 tahun 2009. Selain itu, hal ini juga diatur dalam Peraturan Menteri Kelautan dan Perikanan Nomor 41/Permen-KP/2014 tentang Larangan Pemasukan Ikan Berbahaya ke Indonesia. Bahkan Badan Karantina Ikan, Pengendalian Mutu dan Keamanan Hasil Perikanan (BKIPM) Kementerian Kelautan dan Perikanan telah merilis database daftar ikan yang berpotensi sebagai spesies asing invasif di Indonesia.

Penulis : Wahyu Tri Handoyo - LRMPHP

Rabu, 22 April 2020

IDENTIFIKASI SPESIES IKAN DENGAN CEPAT DAN MUDAH (BERBASIS PENGOLAHAN CITRA)


Indonesia memiliki kekayaan hayati yang melimpah, salah satunya adalah ikan. Dikutip dari Juknis Pemetaan Sebaran JADDI yang diterbitkan oleh BKIPM KKP yang diperoleh dari beberapa sumber, melaporkan bahwa diperkirakan Indonesia memiliki 8500 spesies ikan hidup di perairan Indonesia atau merupakan 45 % dari jumlah spesies yang ada di dunia. Jumlah spesies yang cukup kaya tersebut perlu dilakukan identifikasi sebagai upaya untuk menjaga dan melindungi kelestariannya. Hal ini dikarenakan keanekaragaman hayati ikan merupakan komponen penting untuk menjaga stabilitas ekosistem perairan Indonesia.

Dewasa ini perkembangan bidang pengolahan citra dan computer vision sangat pesat dan dapat di aplikasikan untuk berbagai kebutuhan identifikasi dan deteksi di berbagai bidang dalam industri. Di bidang industri pengolahan citra digunakan untuk membantu proses sortasi, grading, identifikasi dan pengedeteksian cacat produk dengan akurasi sekitar 80 – 96 % dan proses yang cepat.

Pengolahan citra didefinisikan sebagai suatu bentuk pengolahan atau pemrosesan sinyal dengan input berupa gambar (image) dan ditransformasikan menjadi gambar yang disempurnakan atau mengekstrak informasi dari gambar tersebut. Menurut Arsy et al. dalam Jurnal Teknologi dan Sistem Komputer (2016) menyampaikan bahwa suatu citra digital melalui pengolahan citra digital menghasilkan citra digital yang baru, termasuk didalamnya adalah perbaikan citra (image restoration) dan peningkatan kualitas citra (image enhancement). Sedangkan analisis citra digital (digital image analysis) menghasilkan suatu keputusan atau suatu data, termasuk didalamnya adalah pengenalan pola (pattern recognition).

Pengolahan citra saat ini juga sudah dikembangkan untuk identifikasi spesies ikan di perairan ataupun di kedalaman laut. Proses yang cepat dan memiliki akurasi yang tinggi merupakan kelebihan dalam identifikasi keanekaragaman spesies ikan. Allken et al. dalam ICES Journal of Marine Science (2018) melakukan penelitian yang ditujukan untuk mengembangkan sistem identifikasi spesies ikan otomatis untuk mendukung survei akustik-pukat. Metode yang digunakan adalah menggunakan data latih gambar atau citra dari survei, sekitar seribu gambar tiap spesies yang dikurasi secara manual sehingga hanya satu spesies yang akan muncul. Untuk menghasilkan gambar yang secara realistis menyerupai foto-foto penginderaan jauh, contoh ikan dipotong dari gambar nyata dan disisipkan ke gambar latar belakang kosong pada posisi acak, dengan orientasi dan ukuran acak (gambar 1). Untuk validasi dan pengujian, digunakan dataset seimbang  dengan jumlah gambar yang sama untuk setiap spesies ikan yang terdiri dari total 3.000 gambar yang diperoleh dari survei Deep Vision.

Gambar 1. Metode yang digunakan untuk menghasilkan citra data latih (sumber : Allken et al. dalam ICES Journal of Marine Science, 2018)
Hasil penelitiannya menunjukkan bahwa metode yang digunakan yaitu  standard convolutional neural network mampu mengidentifikasi spesies ikan dengan benar dengan akurasi 94% pada dataset gambar yang dikumpulkan dari survei perikanan standar menggunakan sistem kamera yang tersedia secara komersial. Gambar yang tidak bisa dikasifikasikan terutama disebabkan karena gambar ikan yang hanya terlihat sebagian atau dalam orientasi yang tidak ideal. Namun demikian, sistem ini berhasil mengidentifikasi sejumlah besar gambar walaupun ikan hanya terlihat sebagian.

Penelitian lain dilakukan oleh Siddiqui et al. yang dipublikasikan dalam ICES Journal of Marine Science (2018). Penelitian yang dilakukan adalah mengklasifikasikan sepsies ikan secara otomatis dalam video bawah air. Tujuan penelitian yang dilakukan adalah untuk menentukan akurasi yang dapat dicapai pada klasifikasi spesies ikan berbutir halus dengan menggunakan teknik deep learning. Deep learning sendiri adalah jenis Machine Learning  yang digunakan untuk melakukan tugas-tugas klasifikasi langsung dari gambar, teks atau suara.

Metode yang digunakan pada penelitian yang dilakukan adalah menggunakan data video dikumpulkan dari beberapa program pengambilan sampel video bawah air jarak jauh. Video yang diambil pada 16 spesies ikan ditangkap selama analisis yang digunakan untuk menentukan kelimpahan relatif spesies. Penghitungan dan pengukuran jumlah maksimum ikan dari satu spesies yang diidentifikasi dalam bidang pandang secara bersamaan dilakukan dengan menggunakan perangkat lunak Event Measure Stereo. Hasil penelitiannya menunjukkan bahwa keakuratan klasifikasi pada 16 spesies ikan yang difokuskan pada penelitian adalah 94,3%.

Penulis : Wahyu Tri Handoyo - LRMPHP



Selasa, 24 Maret 2020

SUDAH SAATNYA BERALIH MENGGUNAKAN KOMPOSIT RUMPUT LAUT

Komposit adalah material yang tersusun atas campuran dua atau lebih material dengan sifat kimia dan fisika berbeda, dan menghasilkan sebuah material baru yang memiliki sifat-sifat berbeda dengan material-material pengusunnya. Filosofi material komposit adalah efek kombinasi dari bahan-bahan penyusunnya. Material komposit tersusun atas dua tipe material penyusun yakni matriks dan fiber (reinforcement) seperti ditunjukkan pada gambar 1. Keduanya memiliki fungsi yang berbeda, fiber berfungsi sebagai material rangka yang menyusun komposit, sedangkan matriks berfungsi untuk merekatkan fiber dan menjaganya agar tidak berubah posisi. Campuran keduanya akan menghasilkan material yang keras, kuat, namun ringan.
Gambar 1. Skema Material Komposit
Seiring dengan inovasi yang dilakukan dalam bidang material, serat alam mulai dikembangkan oleh para peneliti untuk dijadikan sebagai bahan penguat komposit. Hal ini karena serat alam memiliki Sifat fisik yang kuat dan elastis, melimpah dan ramah lingkungan serta memiliki biaya produksi yang rendah. Serat alam yang digunakan sebagai bahan penguat untuk komposit polimer diantaranya yaitu Sisal , Flex, Hemp, Jute, Rami, Kelapa.

Salah satu sumberdaya laut Indonesia yaitu rumput laut juga merupakan bahan alam yang berpotensi dijadikan komposit. Berdasarkan beberapa penelitian yang sudah dilakukan, rumput laut terutama jenis Eucheuma Cottonii memiliki kandungan selulosa yang tinggi sehingga menghasilkan serat yang kuat. Serat yang kuat tersebut merupakan salah satu syarat bahan yang berpotensi dijadikan serat komposit. Penelitian yang dilakukan oleh Fithriani et al (2007) yang disampaikan dalam Jurnal Pasca Panen dan Bioteknologi Kelautan dan Perikanan Menunjukkan bahwa kadar alfa selulosa yang diperoleh dari limbah karaginan cukup tinggi yaitu lebih dari 50 %.

Penelitian tentang potensi penggunaan rumput laut Eucheuma Cottonii sebagai bahan komposit juga sudah dilakukan. Peneltian yang dilakukan oleh Yushada et al (2018) yang disampaikan pada AIP Conf. Proc. melakukan pengujian sifat mekanik papan partikel dengan bahan komposit dari Eucheuma Cottonii.  Hasil penelitian menunjukkan bahwa sampel dengan penambahan serat rumput laut tertinggi memberikan nilai modulus elastisitas, modulus pecah dan kekuatan internal bonding paling tinggi. Hasil uji kekuatan internal bonding memenuhi standard JIS A 5908.


Penulis : Wahyu Tri Handoyo, Peneliti LRMPHP

Senin, 30 Desember 2019

POTENSI SISTEM REFRIGERASI ABSORPSI SEBAGAI MESIN PEMBUAT ES UNTUK PERIKANAN

Penurunan mutu kesegaran ikan dapat berlangsung secara enzimatis, kimia dan baktereologi. Laju penurunan mutu ikan tersebut sangat dipengaruhi oleh suhu. Oleh karena itu penanganan dan pendinginan ikan sangat diperlukan. Salah satu media pendingin yang umum digunakan untuk penanganan dan penyimpanan ikan adalah es yang umumnya digunakan oleh para nelayan kecil untuk mempertahankan mutu ikan hasil tangkapan. Salah satu kendala yang dihadapi adalah jumlah pasokan es yang terbatas yang disebabkan karena pasokan listrik PLN untuk pembangunan pabrik es mini di daerah pesisir masih kurang sehingga suplai es diperoleh dari lokasi yang jauh. Oleh karena itu diperlukan energi alternatif yang mudah di aplikasikan di daerah pesisir yang jauh dari jaringan listrik PLN.

Salah satu energi alternatif yang potensial untuk digunakan untuk menggantikan listrik PLN adalah energi matahari atau energi surya. Pemanfaatan energi surya sebagai sumber energi untuk mensuplai daya mesin pembuat es diharapkan menjadi salah satu alternatif untuk mengatasi kekurangan pasokan es di daerah-daerah yang minim pasokan listriknya. Dalam Annual Engineering Seminar (2013), Suhanan et al., menyampaikan bahwa salah satu pemanfaatan energi surya dengan memanfaatkan panasnya adalah pada sistem refrigerasi absorpsi karena mesin refrigerasi absorpsi adalah mesin refrigerasi yang bekerja dengan memanfaatkan panas/kalor. Siklus pendinginan absorpsi mirip dengan siklus pendinginan kompresi uap.  Perbedaan utama kedua siklus tersebut adalah gaya yang menyebabkan terjadinya perbedaan tekanan antara tekanan penguapan dan tekanan kondensasi serta cara perpindahan uap dari wilayah bertekanan rendah ke wilayah bertekanan tinggi. Pada sistem pendingin kompresi uap digunakan kompresor, sedangkan pada sistem pendingin absorpsi digunakan absorber dan generator. Uap bertekanan rendah diserap di absorber, tekanan ditingkatkan dengan pompa dan pemberian panas di generator sehingga absorber dan generator dapat menggantikan fungsi kompresor secara mutlak.  Untuk melakukan proses kompresi tersebut, sistem pendingin kompresi uap memerlukan masukan kerja mekanik sedangkan sistem pendingin absorpsi memerlukan masukan energi panas. Sistem refrigerasi absorpsi yang umum digunakan adalah absorpsi ammonia-water dan water-lithium bromide.

Sistem water-lithium bromide banyak digunakan untuk pengkondisian udara dimana suhu evaporasi berada di atas 0 ºC. Litium Bromida (LiBr) adalah suatu kristal garam padat, yang dapat menyerap uap air. Larutan cair yang terjadi memberi tekanan uap yang merupakan fungsi suhu dan konsentrasi larutan. Sedangkan sistem amonia-water digunakan secara luas untuk mesin pendingin berskala kecil (perumahan) maupun industri, yang mana suhu evaporasi yang dibutuhkan mendekati atau di bawah 0ºC. Menurut Horuz dalam Int. Comm. Heat Mass Transfer (1998) menyatakan bahwa pemanfaatan sistem ammonia-water aplikasinya di industri untuk pendinginan pada temperatur rendah. Aplikasi sistem absorpsi ammonia-water yang sudah dilakukan yaitu oleh Energy Concepts (energy-concepts.com) melalui Isaac Solar Ice Maker Project yang telah melakukan uji coba lapang sistem absorpsi ammonia-water di lokasi remote area. Lokasi proyek tersebut yaitu di Maruata Mexico (gambar 1) yang menggunakan es hasil produksinya sebagai pendingin hasil tangkapan ikan, dan di Matano Manne Kenya (gambar 2) yang merupakan desa yang memproduksi susu sapi dan menggunakan es hasil produksi untuk mendinginkan susu sapi.

Gambar 1. Aplikasi sistem absorpsi di Maruata Mexico (sumber : Energy Concepts)

Gambar 1. Aplikasi sistem absorpsi di Matano Manne Kenya (sumber : Energy Concepts)
Pemanfaatan sistem refrigerasi absorpsi di Indonesia untuk pendinginan pada umumnya dan pembuatan es pada khususnya masih sangat sedikit. Menurut Septiadi et al., yang disampaikan dalam Jurnal Meteorologi dan Geofisika (2009) menyatakan bahwa sebetulnya potensi sumber energi surya yang berupa panas di Indonesia cukup melimpah karena wilayah yang dilalui garis khatulistiwa dan  menerima radiasi yang cenderung tegak lurus dibanding wilayah lain dimuka bumi. Oleh karena itu perlu dilakukan penelitian dan kajian yang bertujuan untuk mengetahui apakah sistem tersebut bisa di aplikasikan untuk pembuatan es di cuaca tropis Indonesia.

Penulis : Wahyu Tri Handoyo

Mencuci Rumput Laut dengan Mesin Pencuci Sistem Berkelanjutan

Salah satu potensi kelautan dan dan perikanan Indonesia yang bisa dikembangkan adalah rumput laut yang ketersediannya sangat melimpah. Permintaan terhadap rumput laut dan produk olahannya cukup banyak baik di pasar domestik maupun internasional. Tetapi di pasar internasional, rumput laut dari Indonesia masih dihargai rendah karena mutunya belum baik. Salah satu penyebab rendahnya kualitas rumput laut Indonesia karena kurangnya teknologi penanganan pasca panen. Jika teknologi pasca panen rumput laut dapat dikembangkan dan diterapkan dengan baik, maka rumput laut akan lebih bernilai ekonomis dan dapat meningkatkan nilai tambah, menambah lapangan kerja dan mengurangi impor produk jadi rumput laut dapat tercapai.

Salah satu tahapan penanganan pasca panen rumput laut adalah pencucian rumput laut. Selama ini pencucian rumput laut masih dilakukan secara konvensional dengan cara merendam rumput laut dalam air laut karena akan lebih mudah menghilangkan kerang, pasir dan kotoran lainnya. Selain itu, pencucian rumput laut juga bisa dilakukan dengan merendam rumput laut kedalam air bersih dengan beberapa kali pengadukan. Namun, proses tersebut membutuhkan waktu yang lama sehingga kapasitas produksinya menjadi kecil. Oleh karena itu diperlukan mesin atau peralatan yang dapat mempermudah pencucian rumput laut.

Pada tahun 2015 LRMPHP telah melakukan desain dan rancang bangun mesin pencuci rumput laut sistem berkelanjutan. Mesin tersebut dirancang untuk pencucian dengan sistem berkelanjutan, yaitu alat dapat digunakan secara terus menerus tanpa ada proses muat dan bongkar bahan yang dicuci. Sistem kerja mesin dibuat sesederhana mungkin agar mudah dioperasikan oleh operator di unit pengolahan yang pada umumnya memiliki keahlian yang terbatas. Mesin pencuci rumput laut ini menggunakan motor penggerak berupa motor listrik 3 phase 0,75 HP 1400 rpm yang dilengkapi dengan reducer 1:38. Untuk mensuplai air pada proses pencucian digunakan pompa air dengan debit (Q) : 10-24 l/min, 2800 rpm. Untuk spesifikasi teknis mesin pencuci ditunjukkan pada tabel 1, sedangkan hasil rancang bangun disajikan pada gambar 1.

Gambar 1. Mesin pencuci rumput laut sistem berkelanjutan
Tabel 1. Spesifikasi teknis alat pencuci rumput laut

No.
Nama
Spesifikasi
1.
2.
3.
4.
5.
Sistem Mesin       
Spesifikasi Motor
Spesifikasi Reducer
Spesifikasi Pompa
Dimensi Total:
-  Panjang (mm)
-  Lebar (mm)
-  Tinggi (mm)
Berkelanjutan
3 phase, 380 V/50 Hz, 0,75 HP, 1400 rpm
1:38
220V/50Hz; Q : 10-24 l/min; n : 2800 rpm

1500
1200
1090

Pada uji kinerja terhadap pencucian rumput laut E. Cottonii dan Sargassum sp., secara umum mesin pencuci rumput laut sistem berkelanjutan tersebut dapat bekerja dengan baik sehingga dapat mempermudah pencucian rumput laut serta menghasilkan rumput laut yang memenuhi standar SNI 2690 : 2015.

Penulis : Wahyu Tri Handoyo

Jumat, 27 Desember 2019

PENGGUNAAN AIR TAWAR DAN AIR GARAM UNTUK PENYIMPANAN DINGIN IKAN DI KAPAL


Salah satu perbaikan untuk menjaga mutu ikan atas kapal adalah sistem chilling storage menggunakan media pendinginan air atau air laut pada palkah dengan suhu sekitar 0°C, banyak lebih dikenal dengan refrigerated sea water (RSW). Beberapa rancangan sistem pendingin untuk aplikasi penyimpanan ikan di atas kapal kecil (10-15 GT) diantaranya dilaporkan oleh Widianto tahun 2016 yang dimuat dalam Prosiding Seminar Nasional Hasil Litbang Produk dan BIoteknologi Kelautan dan Perikanan 2016. Rancangan tersebut menjelaskan bahwa secara teknis aplikasi sistem pendingin dapat diterapkan pada kapal kecil sebagai alternatif penganti es batu. Rancangan berupa rancangan termal mini chilling storage dengan sistem RSW menggunakan sistem kompresi uap. Sistem kompresi uap yang merupakan siklus aliran refrigeran terdiri dari komponen utama evaporator, kompresor, kondensor, dan katup ekspansi. Evaporator berfungsi untuk menyerap panas air laut sehingga menjadi dingin, terjadi penyerapan panas oleh refrigeran . Media pendingin yang digunakan pada palkah penyimpanan ikan hasil tangkapan adalah air dan air laut disesuaikan dengan jenis ikan tangkapan.

Serangkaian pengujian chilling storage telah dilakukan di Loka Riset Mekanisai Pengolahan Hasil Perikanan dengan menggunakan air tawar dan air laut di dalam palka. Bahan dan peralatan yang digunakan adalah  air tawar dan air garam 3,5% sejumlah masing-masing sekitar 930 kg dan rangkaian simulasi sistem cooling unit  yang telah dibuat oleh Widianto tahun 2016. Rangkaian peralatan uji ditunjukkan pada Gambar 1. Di dalam palkah yang memiliki volume 2,05 m3 didinginkan air sekitar 930 kg dan udara.


Gambar 1. Palka dan hasil simulasicooling unit  karya Widianto et al (2016)

Hasil pengujian menunjukkan bahwa suhu air palkah mencapai 0 sampai -1 0C selama 13,5 jam pada air tawar dan 9,5 jam pada air garam dengan kecepatan penurunan suhu masing-masing adalah 1,52oC/jam dan 3,0 oC/jam.


Gambar 2. Grafik penurunan suhu air selama pengujian

Perbedaan tersebut disebabkan antara lain oleh beban pendinginan air tawar dan air garam yang berbeda. Beban pendinginan/kecepatan pembuangan panas pada media air tawar dan air garam masing-masing adalah 2,14 kW dan 3,47 kW seperti pada Tabel 1. Beban udara di dalam palkah sangat kecil sehingga dapat dianggap tidak ada.

 Tabel 1. Kecepatan pembuangan panas media



Tampak dari tabel bahwa panas sensibel air media berbeda paling jauh. Faktor utama perbedaan kecepatan pembuangan panas adalah nilai panas spesifik (Cp) dan laju perpindahan panas. Cp air tawar adalah 4,2 kJ/kg.K, lebih tinggi bila dibandingkan air garam 3,5% sebesar 4,0 kJ/kg.K. Energi yang dibutuhkan untuk mendinginkan air tawar dari suhu ruang sampai suhu sekitar 0 ºC menjadi lebih besar sehingga membutuhkan waktu pendinginan yang lebih lama.Energi yang dibutuhkan untuk pendinginan air tawar dan air garam dengan massa 930 kg masing-masing adalah 3.906 kJ/°C dan 3.720 kJ/°C. Faktor penyebab lain adalah perbedaan laju perpindahan panas antara air tawar dan air garam dengan pendinginan yang dilakukan oleh pipa-pipa evaporator. Sifat-sifat propertis air tawar memberikan nilai perpindahan panas yang lebih rendah, sehingga  pendinginan lebih lambat bila dibandingkan dengan air garam.


Penulis : Ahmat Fauzi. Peneliti LRMPHP