EKONOMI BIRU

Arah Kebijakan Pembangunan Sektor Kelautan dan Perikanan 2021 - 2024 Berbasis EKONOMI BIRU

ZI WBK? Yes, We CAN

LRMPHP siap meneruskan pembangunan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) yang telah dimulai sejak tahun 2021. ZI WBK? Yes, We CAN.

LRMPHP ber-ZONA INTEGRITAS

Loka Riset Mekanisasi Pengolahan Hasil Perikanan siap menerapkan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) 2021.

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Produk Hasil Rancang Bangun LRMPHP

Lebih dari 30 peralatan hasil rancang bangun LRMPHP telah dihasilkan selama kurun waktu 2012-2021

Kerjasama Riset

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Kanal Pengelolaan Informasi LRMPHP

Diagram pengelolaan kanal informasi LRMPHP

Sabtu, 28 Desember 2019

KEPUTUSAN EKSPOR BENIH LOBSTER BELUM FINAL

Sehubungan dengan simpang siurnya informasi terkait polemik isu ekspor benih lobster pasca kunjungan Menteri Kelautan dan Perikanan, Edhy Prabowo, ke Nusa Tenggara Barat (NTB), berikut saya coba jelaskan duduk perkaranya:

1. Pada hari Kamis 26 Desember 2019, Menteri Edhy menyambangi Provinsi NTB. Salah satu tujuannya, untuk mendengarkan keluhan dan permasalahan dari para nelayan terkait kontroversi benih lobster. Gubernur Zulkieflimansyah turut mendampingi dari awal sampai akhir.

2. Kunjungan dilakukan dengan menyambangi tiga tempat. Pertama di Telong Elong (Kabupaten Lombok Timur), dilanjutkan ke Teluk Ekas (Kabupaten Lombok Timur), dan terakhir di Pelabuhan Perikanan Awang (Kabupaten Lombok Tengah).

3. Di Telong Elong, kebanyakan masyarakat ingin agar pemerintah membolehkan masyarakat melakukan pembesaran lobster. Dengan harapan, masyarakat bisa mendapatkan penghasilan, tanpa harus melakukan ekspor benih lobster. Sementara di Pelabuhan Awang, para nelayan menuntut agar Permen 56 tahun 2016 dicabut. Mereka juga berharap keran ekspor benih lobster dibuka kembali. Pasalnya, sudah turun temurun menjadi mata pencaharian mereka.

4. Hingga saat ini, Kementerian Kelautan dan Perikanan (KKP), belum memutuskan apakah ekspor benih lobster akan dibuka atau tidak. Saat ini, KKP masih terus melakukan kajian mendalam, tentunya dengan melibatkan para ahli dan pakar. Selain itu, KKP juga ingin terus mendengarkan masukan langsung dari masyarakat, khususnya para nelayan. Karena itulah Menteri Edhy melakukan kunjungan ke NTB dan menjumpai para nelayan.

5. Pernyataan Menteri Edhy tentang, "Ekspor benih lobster tinggal cerita" yang sempat beredar di salah satu media online, adalah penggalan dialog Menteri Edhy dengan masyarakat di Telong Elong. Pernyataan Menteri Edhy tersebut bukan kesimpulan dari rangkaian kunjungan, bukan pula sebuah keputusan.

6. Menteri Edhy tidak ingin terburu-buru soal polemik benih lobster. Menteri Edhy masih ingin mengkaji lebih dalam, mengingat persoalan ini menyangkut dengan masa depan nelayan, serta hajat hidup rakyat banyak.

7. Menteri Edhy akan terus meluangkan waktu untuk menjalin komunikasi, menjaring aspirasi dan mencari solusi terkait sederet persoalan yang dialami para nelayan. Hal ini sesuai dengan arahan langsung dari Presiden Joko Widodo kepada Menteri Edhy.

8. Pernyataan ini saya buat bukan dalam konteks setuju atau tidak setuju ekspor benih lobster, melainkan hanya mengungkap fakta-fakta di lapangan agar tidak terjadi distorsi informasi. Mari kita semua bersabar dan terus mengawal persoalan ini.

Demikian pernyataan ini dibuat, dengan harapan masyarakat mendapat informasi secara utuh dan lengkap.

Terima kasih.

Tb Ardi Januar
Staf Khusus Menteri Kelautan dan Perikanan

Jumat, 27 Desember 2019

PENGGUNAAN AIR TAWAR DAN AIR GARAM UNTUK PENYIMPANAN DINGIN IKAN DI KAPAL


Salah satu perbaikan untuk menjaga mutu ikan atas kapal adalah sistem chilling storage menggunakan media pendinginan air atau air laut pada palkah dengan suhu sekitar 0°C, banyak lebih dikenal dengan refrigerated sea water (RSW). Beberapa rancangan sistem pendingin untuk aplikasi penyimpanan ikan di atas kapal kecil (10-15 GT) diantaranya dilaporkan oleh Widianto tahun 2016 yang dimuat dalam Prosiding Seminar Nasional Hasil Litbang Produk dan BIoteknologi Kelautan dan Perikanan 2016. Rancangan tersebut menjelaskan bahwa secara teknis aplikasi sistem pendingin dapat diterapkan pada kapal kecil sebagai alternatif penganti es batu. Rancangan berupa rancangan termal mini chilling storage dengan sistem RSW menggunakan sistem kompresi uap. Sistem kompresi uap yang merupakan siklus aliran refrigeran terdiri dari komponen utama evaporator, kompresor, kondensor, dan katup ekspansi. Evaporator berfungsi untuk menyerap panas air laut sehingga menjadi dingin, terjadi penyerapan panas oleh refrigeran . Media pendingin yang digunakan pada palkah penyimpanan ikan hasil tangkapan adalah air dan air laut disesuaikan dengan jenis ikan tangkapan.

Serangkaian pengujian chilling storage telah dilakukan di Loka Riset Mekanisai Pengolahan Hasil Perikanan dengan menggunakan air tawar dan air laut di dalam palka. Bahan dan peralatan yang digunakan adalah  air tawar dan air garam 3,5% sejumlah masing-masing sekitar 930 kg dan rangkaian simulasi sistem cooling unit  yang telah dibuat oleh Widianto tahun 2016. Rangkaian peralatan uji ditunjukkan pada Gambar 1. Di dalam palkah yang memiliki volume 2,05 m3 didinginkan air sekitar 930 kg dan udara.


Gambar 1. Palka dan hasil simulasicooling unit  karya Widianto et al (2016)

Hasil pengujian menunjukkan bahwa suhu air palkah mencapai 0 sampai -1 0C selama 13,5 jam pada air tawar dan 9,5 jam pada air garam dengan kecepatan penurunan suhu masing-masing adalah 1,52oC/jam dan 3,0 oC/jam.


Gambar 2. Grafik penurunan suhu air selama pengujian

Perbedaan tersebut disebabkan antara lain oleh beban pendinginan air tawar dan air garam yang berbeda. Beban pendinginan/kecepatan pembuangan panas pada media air tawar dan air garam masing-masing adalah 2,14 kW dan 3,47 kW seperti pada Tabel 1. Beban udara di dalam palkah sangat kecil sehingga dapat dianggap tidak ada.

 Tabel 1. Kecepatan pembuangan panas media



Tampak dari tabel bahwa panas sensibel air media berbeda paling jauh. Faktor utama perbedaan kecepatan pembuangan panas adalah nilai panas spesifik (Cp) dan laju perpindahan panas. Cp air tawar adalah 4,2 kJ/kg.K, lebih tinggi bila dibandingkan air garam 3,5% sebesar 4,0 kJ/kg.K. Energi yang dibutuhkan untuk mendinginkan air tawar dari suhu ruang sampai suhu sekitar 0 ºC menjadi lebih besar sehingga membutuhkan waktu pendinginan yang lebih lama.Energi yang dibutuhkan untuk pendinginan air tawar dan air garam dengan massa 930 kg masing-masing adalah 3.906 kJ/°C dan 3.720 kJ/°C. Faktor penyebab lain adalah perbedaan laju perpindahan panas antara air tawar dan air garam dengan pendinginan yang dilakukan oleh pipa-pipa evaporator. Sifat-sifat propertis air tawar memberikan nilai perpindahan panas yang lebih rendah, sehingga  pendinginan lebih lambat bila dibandingkan dengan air garam.


Penulis : Ahmat Fauzi. Peneliti LRMPHP


Kamis, 26 Desember 2019

RANCANGANTERMAL EVAPORATOR TIPE SHELL AND TUBE UNTUK APLIKASI RSW



Metode pendinginan refrigerated seawater (RSW) adalah salah satu metode untuk mengurangi kemunduran mutu ikan selama transportasi dan penanganan ikan di atas kapal.Sistem RSW memiliki beberapa kelebihan seperti kerusakan fisik ikan yang relatif kecil serta suhu yang lebih stabil dan merata. Komponen RSWmeliputirefrigeran/freon, kompresor, kondensor, katupekspansi, evaporatordan sirkulasi airdinginRSWpada palka. Komponenyang berfungsi untuk pendinginan air RSW adalah evaporator. Perancangan evaporator yang tepat di kapal diperlukan sehingga efisien serta mudah dalam pemasangan dan penggunaan/perawatan. Evaporator merupakan komponen penting mesin pendingin yang berfungsi untuk mendinginkan beban pendinginan dan terjadi evaporasi refrigeran. Pada perencanaan evaporator ini digunakan evaporator untuk pendinginan air laut yang kemudian digunakan untuk mendinginkan beban pendinginan. Proses evaporasi refrigeran terjadi di dalam evaporator dengan adanya penyerapan kalor dari pendinginan air laut. Refrigeran yang berfase cair mengalami evaporasi dan berubah menjadi fase gas pada kondisi temperatur konstan, tetapi terjadi pula proses superheating.

Dalam pemilihan jenis evaporator, faktor-faktor yang perlu dipertimbangkan dalam perancangan evaporator adalah laju perpindahan panas permukaan evaporator, metode penyuplaian refrigeran cair ke evaporator, kebocoran refrigeran, ukuran dan berat yang disesuaikan dengan ruang/ukuran mesin,efek pengotoran dan korosi pipa evaporator,biaya dan keamanandan perawatan evaporator.Rancangan evaporator untuk aplikasi RSW yang sudah ada yaitu evaporator tipe bare tube dan  tipe shell&tube.Evaporator tipebare tubeadalah evaporator berbentukpipa polosyang dipasang pada sekelilingdinding palka. Tipebanyak digunakan karena mudah dalam pemasangan,dapat mendinginkan air dan udara dalam palka namun pipa mendapatkan tekanan dari beban ikan ikan sehingga ada potensi bocor.Tipeshell and tubeberupatabung(shell) yang di dalamnya adapipa,airRSW di dalam shelldidinginkan oleh freon di dalam pipa.Komponen evaporator shell and tube terdiri dari komponen utama pipa di dalam, shell, tube sheet/penempat pipa, baffle/sekat, partisi aliran pipa, sisi masuk dan sisi keluar fluida, head/penutup depan dan belakang, serta support/komponen pendukung. Evaporator tipe shell and tubedigunakan dengan pertimbangan sebagai berikut :

a.   Luas permukaan yang dibutuhkan kecil.
b.   Penempatan evaporator horizontal terhadap kapal.
c.   Koefisien perpindahan panasnya besar.
d.   Dilihat dari konstruksinya lebih sederhana, sehingga perawatan cukup mudah dan murah, dapat juga dilakukan secara kimiawi.

Salah satu perancangan termal evaporatorshell and tubeantara lain disampaikan olehFauzi tahun 2017yang dimuat dalamProsidingSemnaskan UGM Tahun 2017, terdiri dari beberapa tahapan yaitu menentukan konsep desain RSW, menentukan/menghitung beban pendinginan, melakukan analisis siklus pendinginan, dan melakukan perancangan termal evaporator. Beban awal pendinginan RSW pada kapal 10-15 GT dengan kapasitas ikan sampai 1,3 ton adalah sebesar 4,07 kW berdasarkan penelitian Widianto et al (2016) ditambahdenganbeban sirkulasi pompa air laut. Fluida yang didinginkan adalah air laut (salinitas 3,5%). Perancangan termal evaporator menggunakan metode Kern. Rancangan  konsep sistem RSW dengan siklus refrigerasi kompresi uap sepeti  pada Gambar 1.
 
Gambar 1. Skema konsep aplikasi RSW

Sistem kompresi uap mendinginkan air laut yang ditargetkan sampai suhu -1 ºC, selanjutnya air laut dingin disirkulasikan untuk mendinginkan ikan di dalam palkah. Sistem kompresi uap yang merupakan siklus aliran refrigeran terdiri dari komponen utama evaporator, kompresor, kondensor, dan katup ekspansi (Arora, 2006). Evaporator berfungsi untuk menyerap panas air laut sehingga menjadi dingin, terjadi penyerapan panas oleh refrigeran . Kompresor untuk menaikkan tekanan refrigeran pada tekanan yang ditentukan. Kondensor untuk membuang panas sampai suhu yang ditentukan. Sedangkan katup ekspansi berfungsi untuk menurunkan tekanan. Dengan turunnya tekanan, maka suhu refrigeran juga turun sesuai yang ditargetkan. Refrigeran (fluida pendingin) yang dinilai cocok untuk aplikasi sistem refrigerasi diatas kapal adalah refrigeran - 22(R-22). R-22 paling tepat digunakan karena memiliki titik uap yang rendah -40,8 0C, kalor laten lebih tinggi, murah dan mudah didapat, tidak beracun, mudah terdeteksi jika mengalami kebocoran, aman digunakan serta tidak mudah terbakar.

Hasil rancangan evaporator yang dihasilkan berupa shell&tube 4 pass dengan luas permukaan perpindahan panas 1,015 m2, diameter shell 150 mm dengan panjang 850 mm, serta pipa diameter 15,875 mm sejumlah 24 buah berbahan tembagadigambarkanseperti pada Gambar 2 dan 3.  Rancangan ini kompak dan fleksibel seingga dapat dipasang dengan baik pada kapal 10-15 GT. Selain itu pembersihan bagian dalam pipa dan shell juga mudah. Pemasangan evaporator yang dapat diposisikan horizontal juga lebih stabil di atas kapal. Rancangan evaporator shell and tube ini dapat menjadi salah satu alternatif yang dapat dipakai sebagai aplikasi RSW di atas kapal 10-15 GT. Bila dibandingkan dengan rancangan yang sudah ada yaitu jenis bare tube/pipa polos yang dipasang melingkari palka maka jenis shell and tube memiliki beberapa kelebihan antara lain lebih kompak, potensi kerusakan/kebocoran pipa lebih kecil karena tidak terkena beban ikan, ruangan palka lebih besar dan perawatan lebih mudah.


 Penulis : Ahmat Fauzi, Peneliti LRMPHP




Rabu, 25 Desember 2019

SIKLUS REFRIGERASI UNTUK PENYIMPAN IKAN DI KAPAL



Salah satu alternatif upaya peningkatan penanganan ikan di kapal adalah penerapan sistem refrigerasi di atas kapal untuk meningkatkan kemampuan simpan ikan hasil tangkapan nelayan yang telah banyak diaplikasikan pada kapal penangkap ikan di Indonesia. Sistem pendinginan refrigerasi yang banyak digunakan saat ini adalah sistem pendinginan kompresi uap dan absorpsi uap.Teknologi refrigerasi tersebut digunakan antara lain untuk penanganan ikan di kapal dengan sistem refrigerated sea water (RSW) pada pendinginan dengan suhu sekitar 0 ºC.

Sistem refrigerasi kompresi uap pertama kali diperkenalkan oleh Oliver Evans dan dipatenkan pertama kali oleh Jacob Perkin tahun 1835 dengan paten mesin pendingin siklus kompresi uap pertama. Selanjutnya sistem refrigerasi absorpsi pertama kali dikembangkan oleh Ferdinand Carre di Perancis, kemudian dipatenkan di Amerika Serikat pada tahun 1860. Pada permulaan abad ke-20, sistem pendinginan absorpsi berkembang pesat dan secara luas digunakan. Tetapi setelah tahun 1915, dimana motor listrik mulai dikembangkan, sistem kompresi amonia secara aktif diperkenalkan dan diterima secara luas. Pengembangan kemudian terkonsentasi pada sistem kompresi uap dan sistem absorpsi uap secara praktis dilupakan, sampai akhir 1930-an. Pada sistem kompresi uap, absorber, pompa, dan generator yamg terdapat pada sistem refrigerasi absorpsi uap diganti dengan kompresor pada sistem kompresi uap.

Pada sistem pendinginan kompresi uap menggunakan kompresor untuk menaikkan tekanan refrigeran, sedangkan pada sistem pendinginan absorpsi, penggunaan sumber energi murah sebagai suplai energi pada generator dapat dimungkinkan. Beberapa contoh dari sumber energi murah yang dimaksudkan disini antara lain energi matahari, energi panas bumi, maupun energi buangan seperti uap sisa dalam sistem pembangkit turbin yang masih mempunyai suhu tinggi sehingga masih dapat dimanfaatkan sebelum dibuang. Perbedaan utama dari sistem kompresi uap dengansistem pendinginan absorpsi terletak pada cara menaikkan tekanan refrigeran. Pada siklus pendinginan absorpsi, refrigeran dinaikkan tekanannya pada saat masih berupa fase cair, sedangkan pada siklus kompresi uap, refrigeran dinaikkan tekanannya saat berupa fase uap. Prinsip menaikkan tekanan refrigeran tanpa mengubah volumenya (refrigeran cair termasuk fluida yang tak mampu mampat) membuat sistem pendinginan absorpsi sangat cocok digunakan sebagai pendingin bertenaga matahari, sumber kalor pembakaran bahan bakar, atau pemakaian uap sisa. Hal ini akan mengurangi kebutuhan energi dibandingkan bila menggunakan kompresor.

Pada siklus refrigerasi kompresi uap, siklus yang terjadi adalah siklus kompresi uap. Ada empat komponen utama dari siklus ini, yaitu kompresor, kondenser, evaporator, dan katup ekspansi. Gambar skema dan diagram tekanan-entalpi (P-h) dari siklus kompresi uap terdapat pada Gambar 1.


Gambar 1. Skema dan diagram P-h siklus refrigerasi kompresi uap

Kompresor berfungsi untuk mengkompresi refrigeran dari evaporator (titik 1) sehingga tekanannya naik (titik 2). Selanjutnya di kondenser terjadi kondensasi refrigeran, refrigeran berubah fase menjadi cair (dari titik 2 ke titik 3), pendinginan dapat dilakukan dengan air, udara, atau keduanya. Selanjutnya refrigeran diekspansikan di katup ekspansi sehingga tekanannya turun begitu pula temperaturnya(dari titik 3 ke titik 4). Setelah itu refrigeran memasuki evaporator untuk pendinginan beban sehingga refrigeran mengalami evaporasi menjadi fase uap (dari titik 4 ke titik 1). Kemudian dikompresi lagi, demikian siklus berlanjut.

Berbeda dengan sistem kompresi uap, sistem absobsi tidak menggunakan kompresor, fungsi kompresor digantikan oleh generator, absorber, dan pompa. Ada dua tipe sistem refrigerasi absorpsi, yaitu sistem aqua-amonia, dengan amonia sebagai refrigeran dan air sebagai absorben, dan sistem lithium bromida-air dengan air sebagai refrigeran dan lithium bromida sebagai absorben. Sistem lithium bromida-air hanya digunakan pada sistem AC karena temperatur beku refrigeran (air) hanya 0 0C, sedangkan sistem aqua-amonia dapat digunakan baik untuk sistem AC maupun sistem refrigerasi, karena temperatur beku sistem aqua-amonia dapat mencapai 33 0C atau lebih rendah.Secara sederhana siklus refrigerasi absorpsi uap digambarkan pada Gambar 2.
                                            


Gambar 2. Skema siklus refrigerasi absorpsi sederhana

Perbandingan kebutuhan dan spesifikasi sistem refigerasi kompresi uap dan absorpsi baik sistem aqua-amonia maupun lithium bromida secara umum adalah pada energi listrik yang dibutuhkan, refrigeran yang digunakan, temperatur kerja, energi termal/panas luar yang dibutuhkan, investasi dan operasi/pemeliharaan. Energi listrik yang dibutuhkan pada siklus absorpsi sekitar 5-10% dari siklus kompresi uap. Refrigeran yang digunakan pada kompresi uap bervariasi, pada absorpsi air-amonia berupa amonia dengan air sebagai absorbent, ramah lingkungan dan murah, sedangkan pada absoprsi Lithium-Bromida berupa lithium bromida sebagai absorben yang mahal. Temperatur kerja pada siklus kompresi uap bergantung pada refrigeran, pada absorpsi air-amonia -33 oC atau lebih rendah serta lithium bromida hanya sampai +7 oC. Siklus absorpsi membutuhkan panas dari luar yang biasanya berupa uap tekanan rendah, air panas dan sejenisnya, sedangkan siklus kompresi uap tidak dibutuhkan. Investasi untuk siklus kompresi uap rendah sedangkan absorpsi uap tinggi, siklus air-amonia cocok untuk di atas 100 TR. Secara operasi/pemeliharaan siklus kompresi uap mudah hanya sering mengganti bagian yang aus karena bergerak. Pada absoprsi air-amonia juga mudah, bila ada kebocoran refrigeran mudah dicium. Sedangkan pada siklus lithium bromida operasi dan pemeliharaan lebih sulit, sulit juga mendeteksi kebocoran refrigeran.

Berdasarkan perbandingan sistem kompresi uap, absorpsi uap aqua-amonia, dan absorpsi lithium bromida maka sistem refrigerasi kompresi uap lebih tepat jika digunakan pada kapal ikan terutama kapal kecil 5-30 GT karena teknologi yang sederhana, tidak membutuhkan energi panas tambahan, investasi tidak besar dan tidak memerlukan ruang yang besar. Walaupun terdapat kelemahan yaitu memerlukan energi listrik yang relatif tinggi, namun secara teknis sistem kompresi uap lebih bisa diterapkan apalagi untuk kapal yang berukuran relatif kecil.



Penulis : Ahmat Fauzi, Peneliti LRMPHP

Selasa, 24 Desember 2019

PENYIMPANAN RUMPUT LAUT DI SALAH SATU UKM KABUPATEN GUNUNG KIDUL

Rumput laut merupakan salah satu komoditas yang banyak dikonsumsi maupun diperjualbelikan di Indonesia termasuk di Kabupaten Gunung Kidul. UKM pengolah maupun pengepul rumput laut akan melakukan penyimpanan rumput laut sebelum diolah atau dipasarkan. Penyimpanan rumput laut dapat berlangsung selama beberapa hari sampai bertahun-tahun. Identifikasi, dan karakterisasi gudang penyimpanan rumput laut dilakukan di salah satu pelaku usaha pengolahan dan distribusi rumput laut yaitu di UD. Rumput Laut Mandiri, Gunung Kidul.

Selama tahun 2019 ini, jenis rumput laut yang disimpan di gudang penyimpanan UD. Rumput Laut Mandiri yaitu : Ulva, agar merah, Pitata, Sargassum sp., Gelidina, Gelidium, Gracilaria, dan Eucheuma spinosum. Sedangkan Eucheuma cottonii belum tersedia karena belum mendapat kiriman dari Makassar.
Jenis rumput laut yang disimpan UD. Rumput Laut Mandiri
Rumput laut yang disimpan ada 2 macam menurut kondisi pengolahannya yaitu rumput laut kering asin dan kering tawar. Pada rumput laut kering asin masih terdapat kandungan garam dalam jumlah banyak, sedangkan pada rumput laut kering tawar, sudah mengalami proses pencucian dan harus dikeringkan dahulu sebelum disimpan.

Para-para penjemuran rumput laut
Sebelum disimpan, rumput laut dikeringkan dengan diletakkan pada para – para yang terpapar sinar matahari. Proses pengeringan dengan sinar matahari ini berlangsung selama dua hari. Pengecekan kadar air dengan cara memegang fisik rumput lautnya. Setelah dirasa cukup, rumput laut kemudian dimasukkan ke dalam karung dan disimpan pada gudang penyimpanan.

Penyimpanan rumput laut di gudang dalam wadah karung dengan cara ditumpuk sampai ketinggian tertentu, di bagian bawahnya ada yang diberi alas palet dan ada yang tidak. Kapasitas maksimal gudang penyimpanan yaitu 20 ton, namun saat ini kapasitas gudang penyimpanan yang digunakan hanya 3 ton. Penyimpanan rumput laut kering asin bisa bertahan selama 3 – 5 tahun, dengan susut bobot  18% selama 4 tahun. 

Kondisi gudang penyimpanan
Perlakuan pasca panen hendaknya perlu menjadi perhatian yang serius dari semua pelaku usaha rumput laut. Pembudidaya harus mulai sadar akan pentingnya jaminan kualitas hasil produksi yang baik, dengan begitu akan terbangun hubungan timbal balik secara positif antara pembudidaya dengan pihak industri pengolah. Jika standar kualitas rumput laut yang dihasilkan baik, maka akan berpengaruh terhadap keberlangsungan usaha industri pengolah, kondisi ini tentunya secara langsung akan menjamin kontinuitas penyerapan produksi dari pembudidaya sehingga kegiatan usaha budidaya akan berjalan secara berkelanjutan (Direktorat Jenderal Perikanan Budidaya, KKP). 

Secara umum rumput laut kering dengan kandungan kadar air 20-30% mampu bertahan 2-3 tahun, bergantung pada cara penyimpanan.  Tempat penyimpanan yang baik adalah tidak lembab, kering dan memiliki sirkulasi udara yang baik. Pada bagian dasar (di atas lantai) diberi alas dari papan penyangga untuk menghindari kelembaban. Penyimpanan yang tidak baik bisa menyebabkan kadar air rumput laut meningkat hingga 50-55%. Pada kondisi demikian, rumput laut bisa membusuk dan tidak mampu disimpan lama. Rumput laut yang mengalami peningkatan kadar air sebaiknya dilakukan penjemuran ulang dan dipadatkan kembali, kemudian disimpan pada tempat yang memenuhi syarat penyimpanan.

Menurut Direktorat Jenderal Perikanan Budidaya,KKP, ada beberapa hal yang perlu diperhatikan dalam proses penyimpanan, antara lain :
1) Tempat/gudang penyimpanan harus mempunyai sirkulasi udara yang baik, tetapi hindari lubang         yang besar, gudang mudah dirawat dan dibersihkan dan jangan menimbulkan kotoran/benda                asing yang dapat mengkontaminasi produk
2) Produk harus disimpan dan ditata secara rapi (di atas palet kayu) dan diberi label (kode lot)
3) Barang yang masuk dan keluar gudang harus tercatat dengan baik (jumlah dan kode lot-nya)
4) Pengeluaran barang dari gudang harus mengikuti system FIFO (first in first out), yaitu barang              yang masuk pertama kali harus keluar terlebih dahulu. Sedangkan barang yang masuk terakhir             harus keluar belakangan.
5) Ketinggian susunan rumput laut yang telah dikemas maksimal 5 susun sedangkan jarak antar              palet/papan (alas) 20 cm. 



Penulis: Ahmat Fauzi, Peneliti LRMPHP