EKONOMI BIRU

Arah Kebijakan Pembangunan Sektor Kelautan dan Perikanan 2021 - 2024 Berbasis EKONOMI BIRU

ZI WBK? Yes, We CAN

LRMPHP siap meneruskan pembangunan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) yang telah dimulai sejak tahun 2021. ZI WBK? Yes, We CAN.

LRMPHP ber-ZONA INTEGRITAS

Loka Riset Mekanisasi Pengolahan Hasil Perikanan siap menerapkan Zona Integritas menuju satuan kerja berpredikat Wilayah Bebas dari Korupsi (WBK) dan Wilayah Birokrasi Bersih dan Melayani (WBBM) 2021.

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Produk Hasil Rancang Bangun LRMPHP

Lebih dari 30 peralatan hasil rancang bangun LRMPHP telah dihasilkan selama kurun waktu 2012-2021

Kerjasama Riset

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Kanal Pengelolaan Informasi LRMPHP

Diagram pengelolaan kanal informasi LRMPHP

Tampilkan postingan dengan label Berita. Tampilkan semua postingan
Tampilkan postingan dengan label Berita. Tampilkan semua postingan

Jumat, 20 Desember 2019

Perubahan Citra Mata Ikan Tuna Selama Penyimpanan Suhu Ruang

Ikan menunjukkan beberapa perubahan fisik yang jelas selama proses penurunan kesegaran seperti warna, tekstur, bau, kulit, sisik, mata, insang dan perut. Perubahan tersebut dapat digunakan untuk menentukan kesegaran ikan secara tunggal. Warna adalah salah satu atribut kualitas ikan yang paling penting karena hubungannya dengan kesegaran produk dan memiliki efek langsung pada persepsi konsumen. Warna mata ikan berubah dari bersih dan cerah menjadi berlumpur dan menguning setelah ikan menjadi busuk ketika disimpan secara alami. Hal ini menunjukkan bahwa warna mata ikan dapat digunakan sebagai parameter dalam menentukan kesegaran ikan.

Analisis citra merupakan alat yang digunakan untuk mengevaluasi data berupa gambar dan menganalisis perubahan warnanya menggunakan perangkat lunak sehingga dapat digunakan untuk menentukan kesegaran ikan. Analisis citra terdiri dari tiga langkah utama yaitu pengolahan level dasar (akuisisi citra dan proses awal), pengolahan level menengah (segmentasi dan pengukuran objek), dan pengolahan citra lanjutan. Dengan menerapkan analisa citra di bidang pengolahan hasil perikanan maka akan mendapatkan sebuah metode pemeriksaan kualitas ikan yang tidak merusak ikan dan tidak berbahaya bagi penguji dengan waktu yang relatif cepat.

Pengolahan citra mata ikan menggunakan software matlab R.2017a. Tahapan pengolahan citra meliputi pengambilan citra mata ikan, segmentasi ROI (region of interest), konversi citra RGB menjadi grayscale, dan ekstraksi fitur. Ekstraksi fitur yang digunakan yaitu gray-level co-occurrence matrix (GLCM). Pengujian dilakukan selama 20 jam dengan pengambilan citra mata setiap 2 jam pada suhu ruang. Hasil penelitian menunjukkan nilai parameter energy (0,964) dan homogenity (0,902) memiliki hubungan korelasi terhadap lama waktu pengujian sedangkan nilai parameter contrast (-0,554) dan correlation (-0,395) tidak memiliki hubungan korelasi terhadap lama waktu pengujian. Dari hasil pengamatan dapat disimpulkan bahwa parameter citra mata ikan yang meliputi energy dan homogenity memiliki hubungan yang signifikan dengan waktu penyimpanan ikan tuna pada suhu ruang sehingga dapat digunakan untuk menentukan kualitas ikan.


Hasil pengolahan citra mata ikan tuna
Penulis : Twi Novianto, Peneliti LRMPHP

Pengaplikasi Deret Sensor Untuk Pendeteksian Kadar Formalin


Ikan merupakan sumber bahan pangan yang bermutu tinggi, terutama karena banyak mengandung protein yang sangat dibutuhkan oleh tubuh manusia. Namun demikian ikan merupakan bahan pangan yang mudah mengalami kerusakan atau kemunduran mutu (perishable food) terutama pada daerah tropis. Untuk mencegah kemunduran mutu pada ikan pada umumnya menggunakan suhu rendah. Bahan yang sering digunakan untuk menjaga suhu tetap rendah adalah es tetapi karena daya tahan es yang terbatas dan ada penambahan biaya untuk pembelian es maka sering diabaikan oleh nelayan. Oleh karena itu sering digunakan bahan kimia untuk pengawet. Salah satu bahan kimia yang digunakan adalah formalin  Penggunaan formalin dimaksudkan untuk memperpanjang umur simpan, karena formalin adalah senyawa anti mikroba yang efektif dalam membunuh bakteri. Menurut WHO formaldehid (senyawa yang terdapat pada formalin) terdapat dalam produk makanan karena kegunaannya sebagai zat bakteoristik yaitu dapat menghambat pertumbuhan mikroba dalam produk pangan sehingga umur simpan produk tersebut meningkat.

Formalin merupakan bahan kimia berbahaya yang dilarang digunakan untuk bahan tambahan makanan menurut peraturan Menteri Kesehatan No. 033 Tahun 2012 tentang Bahan Tambahan Pangan. Formalin sangat berbahaya bagi kesehatan manusia. Kandungan formalin yang tinggi di dalam tubuh dapat menyebabkan iritasi lambung, alergi, bersifat karsinogenik (menyebabkan kanker) dan bersifat mutagen (menyebabkan perubahan fungsi sel/jaringan) serta orang yang mengonsumsinya akan muntah, diare bercampur darah dan kematian yang disebabkan adanya kegagalan peredaran darah.

Kandungan formalin pada bahan makanan sulit untuk diidentifikasi menggunakan panca indera manusia karena sifatnya yang sangat berbahaya. Berdasarkan sifat fisik formalin yang memiliki bau yang tajam maka dapat digunakan teknologi sensor gas untuk mendeteksi adanya kandungan formalin pada bahan makanan. Sensor gas yang dipilih adalah sensor MQ 3 dan MQ 137. Sensor diuji pada larutan formalin dengan kosentrasi 0.025%, 0.05%, 0.075% dan 0.1%. Dengan cara yang sama dilakukan pengujian pada daging fillet ikan tuna dengan berat 50 gr yang telah direndam selama 10 menit. Hasil pengujian sensor MQ 3 pada daging ikan tuna menunjukkan adanya korelasi dengan nilai koefisien korelasi 0.99 sedangkan pada sensor MQ 137 menunjukkan adanya korelasi dengan nilai koefisien korelasi sebesar 0.98. Berdasarkan hal ini dapat disimpulkan bahwa sensor MQ 3 dan MQ 137 dapat digunakan untuk mendeteksi kadar formalin pada daging ikan tuna.


Diagram modul sensor gas

Penulis : Toni Dwi Novianto, Peneliti LRMPHP

Kamis, 19 Desember 2019

Peluang Computer Vision untuk Penentuan Kualitas Ikan


Ikan merupakan sumber protein yang penting bagi manusia. Total konsumsi ikan meningkat secara signifikan pada beberapa tahun terakhir. Terdapat beberapa parameter yang mempengaruhi kualitas ikan antara lain ketersediaan, keamanan, nilai gizi dan kesegaran. Kesegaran ikan adalah parameter yang mempengaruhi secara langsung kualitas ikan. Kesegaran ikan dapat ditentukan berdasarkan perubahan post mortem yang  dapat mempengaruhi kondisi fisik, kimia, dan mikrobiologi pada tubuh ikan. Terdapat beberapa metode untuk menentukan kesegaran ikan yaitu secara fisik, kimia, dan mikrobiologi serta sensori. Untuk metode sensori, parameter yang biasa digunakan adalah bau, warna, dan tekstur. Metode sensori merupakan metode ilmiah yang digunakan untuk mengukur, menganalisis, dan menginterpretasikan respon terhadap suatu produk berdasarkan yang ditangkap oleh indra manusia, seperti penglihatan, penciuman, perasa, peraba, dan pendengaran. Metode sensori memiliki kekurangan yaitu membutuhkan banyak panelis dan waktu yang lama. Selain itu keakuratannya ditentukan oleh seberapa ahli panelis yang digunakan. Sebaliknya menggunakan metode computer vision untuk menentukan kualitas ikan memiliki keunggulan lebih konsisten, efisien dan dapat menghemat biaya serta akurasi dan kecepatan yang lebih baik dibandingkan dengan pengujian manusia.

Computer vision merupakan suatu konstruksi untuk mendiskripsikan informasi eksplisit dan bermakna tentang objek fisik melalui analisis gambar. Gambar yang diperoleh dari sensor fisik kemudian dianalisis menggunakan hardware dan software yang sesuai untuk melakukan tugas secara visual yang diharapkan dapat meningkatkan kualitas penglihatan manusia dengan didukung oleh perangkat elektronik. Tahap utama dalam analisis pengolahan gambar adalah : (1) Akuisisi gambar dan konversi dalam bentuk digital; (2) peningkatan kualitas gambar untuk pre-processing; (3) partisi gambar digital untuk mendapatkan daerah yang diinginkan menggunakan proses segmentasi; (4) mendapatkan karakteristik objek gambar dengan menggunakan operasi pengukuran objek; (5) pengklasifikasian untuk mengidentifikasi objek gambar. Mengambil, memproses dan menganalisis gambar adalah aspek utama dari computer vision yang harus dipertimbangkan dalam menentukan kesegaran ikan secara visual. Pengamatan visual secara otomatis mulai banyak diminati karena memiliki keunggulan seperti biaya yang rendah, hasil yang konsisten dan akurat serta proses yang cepat.  Sehingga tujuan utamanya adalah untuk menggantikan pengamatan visual secara tradisional dengan sistem computer vision untuk menentukan kualitas ikan.
 
Skema Sistem Computer Vision

Penulis : Toni Dwi Novianto, Peneliti LRMPHP

Rabu, 18 Desember 2019

Pengukuran Nilai Porositas Menggunakan Software ImageJ

ImageJ (https://imagej.nih.gov/ij/) adalah perangkat lunak yang dapat digunakan untuk menganalisis pori-pori dan untuk menentukan wilayah distribusi ukuran berbasis pori, diameter pori, dan fraksi persen daerah pori-pori dari suatu objek. Perangkat lunak ini menggunakan kontras antara dua fase (pori-pori dan bagian padat) dalam gambar. Pengukuran porositas menggunakan software ImageJ mengikuti metode yang telah dilakukan oleh Ridha dan Darminto (2016) yang dimuat dalam Jurnal Fisika dan Aplikasinya. Hasil mikrografi SEM (scanning electron microscopy) selanjutnya dianalisis menggunakan software ImageJ untuk mengetahui ukuran pori permukaan suatu objek. Ukuran pori ini nantinya digunakan untuk menentukan nilai porositas.
Analisis mikrografi SEM pada software ImageJ meliputi beberapa tahap yaitu :

1. Tahap persiapan gambar
Langkah pada tahap ini meliputi membuka software Image-J > open file mikrografi SEM sampel > pilih menu Analyze > Set Scale (nm, µ m) > pilih menu Image > Crop gambar. Hasil gambar pada tahap ini ditunjukkan pada gambar berikut.

Tampilan mikrografi SEM (Sumber : www.jitek.ub.ac.id)
2. Tahap threshold gambar
Tahap ini merupakan tahap segmentasi warna gambar. Pada tahap ini, warna dibedakan menjadi warna partikel atau pori dan warna latar belakang (background). Langkah pada tahap ini adalah pilih menu Image > Adjust > Threshold > Setting ukuran warna berdasarkan topografi gambar. Hasil gambar pada tahap ini ditunjukkan pada gambar berikut.

Tampilan hasil proses threshold
3. Tahap analisis gambar
Langkah dalam tahap ini adalah pilih menu Analyze > Set parameter > Ok, pilih kembali menu Analyze > Analyze Particles. Nilai data hasil analisis keluar dalam bentuk file Excel. Hasil gambar pada tahap ini ditunjukkan pada gambar berikut.

Tampilan hasil proses analyze particle
Selanjutnya dari software imageJ diperoleh data luas permukaan total sampel yang dianalisis (AT) dan luas total pori yang teranalisis dari sampel (ATP). Maka nilai porositas dapat dihitung dengan persamaan berikut.







Penulis : Toni Dwi Novianto, Peneliti LRMPHP

Selasa, 17 Desember 2019

Mengenal Software Pengolahan Gambar ImageJ


ImageJ merupakan sebuah software pengolah citra/gambar yang dikembangkan oleh Wayne Rasband dari National Intitutes of Health (NIH). ImageJ ditulis menggunakan Java yang dapat dijalankan pada sistem operasi linux, macintosh, dan windows serta dapat digunakan pada mode 32 bit dan 64 bit. Selain itu imagej dapat digunakan secara online maupun dipasang pada komputer. ImageJ memiliki keunggulan dibandingkan software pengolah gambar lainnya yaitu merupakan software domain public yang artinya tidak ada batasan hak cipta. Pengguna diizinkan untuk menjalankan program, membagikan salinan, dan membuat perubahan positif pada program. Software imageJ dapat didownload dengan gratis di https://imagej.nih.gov/ij/ Salah satu contoh pengaplikasian software ini dalam bidang perikanan adalah untuk mengukur pori-pori gambar SEM nugget ikan


Tampilan Software ImageJ
Software imageJ mendukung semua proses manipulasi gambar secara umum termasuk membaca dan mengedit file gambar. Format gambar yang dapat dibaca antara lain TIFF, GIF, JPEG, BMP, DICOM, FITS, dan RAW. Selain itu juga dapat digunakan untuk memproses gambar secara langsung dari kamera, scanner, dan video recorder. ImageJ memungkinkan pengguna untuk membuat grafik dari data serta meningkatkan kualitas gambar. Ini sering digunakan untuk menganalisis gambar mikroskop, pengukuran area, penghitungan partikel, segmentasi dan pengukuran fitur spasial atau temporal dari elemen biologis.  Fitur-fitur ini sangat penting bagi para peneliti untuk menganalisis foto dan gambar mereka. Beberapa fitur utama dari program ini adalah sebagai berikut.

1. Fungsi Paralel: Mendukung pengolahan beberapa gambar sekaligus dalam satu jendela tampilan          dan melakukan fungsi simultan pada gambar-gambar ini.      

2. Perhitungan (Calculations): Membuat statistik sesuai dengan parameter yang ditentukan                      pengguna seperti rerata (mean) dan standar deviasi menggunakan satuan SI.

3. Pengukuran (Measurements): Menentukan jarak, luas, dan pengukuran geometris lainnya                    berdasarkan gambar

4. Output: Membuat histogram kepadatan populasi dan beberapa jenis grafik lainnya.

5. Scaling: Memungkinkan untuk memperbesar, memperkecil, atau mengubah orientasi gambar.

6. Pengeditan Foto: Memungkinkan untuk mengedit gambar seperti menghilangkan cacat,                        mempertajam gambar, dan menerapkan filter. 

7. Plugin: Memungkinkan untuk menulis plugin untuk menyesuaikan dengan kebutuhan.

8. Macro: Dapat membuat makro yang akan mengotomatiskan tugas yang paling sering digunakan.

9. Warna: Tersedia grayscale dan warna yang diindeks untuk membantu mempercepat pemrosesan          gambar. Ketika kecepatan tidak menjadi masalah, banyak pilihan warna lain tersedia untuk                  membuat efek tambahan.



Penulis : Toni Dwi Novianto, Peneliti LRMPHP

PERNYATAAN PUBLIK KKP TERKAIT BENIH LOBSTER

PERNYATAAN PUBLIK
KEMENTERIAN KELAUTAN DAN PERIKANAN

Sehubungan dengan beredarnya informasi terkait isu perdagangan benih lobster, bersama ini kami atas nama Kementerian Kelautan dan Perikanan (KKP) menyampaikan beberapa hal sebagai berikut :

1. Indonesia merupakan negara penghasil benih lobster terbesar di dunia yang berasal dari hasil tangkapan di alam. Di beberapa daerah, ribuan nelayan kecil menggantungkan hidup dari perdagangan benih lobster ini.
2. Di sisi lain, penyelundupan benih lobster untuk di ekspor ke luar negeri juga marak terjadi sehingga dikhawatirkan dapat mengganggu keberlanjutan ekosistem lobster di alam.
3. Saat ini KKP tengah mengkaji dan merumuskan kembali kebijakan pemanfaatan benih lobster bersama para pemangku kepentingan dan para pakar/ahli yang terdiri dari para peneliti dan akademisi, serta meminta masukan dan saran para pelaku usaha dengan memperhatikan aspek keberlanjutan lobster di alam dan keberlangsungan ekonomi masyarakat nelayan.
4. Kebijakan yang tengah dikaji terutama berkaitan dengan pemanfaatan benih lobster hasil tangkapan di alam, dengan mengatur ulang perdagangan benih lobster dan rencana pengembangan teknologi pembesaran benih lobster hingga ukuran konsumsi di dalam negeri.
5. Kami informasikan bahwa kebijakan ini masih dalam proses pengkajian, memerlukan waktu  hingga siap untuk disosialisasikan.
6. Mari kita semua bersabar menunggu hasil kajian secara komprehensif oleh KKP dan tidak membuat kesimpulan sendiri sehingga dapat menimbulkan informasi yang simpang siur.

Demikian pernyataan ini kami sampaikan, atas perhatiannya diucapkan terima kasih.

Jakarta, 16 Desember 2019
Kepala Biro Kerja Sama dan Humas KKP
Lilly Aprilya Pregiwati

Jumat, 13 Desember 2019

Monev Semester II Tahun 2019 Lingkup LRMPHP

Monev Semester II Tahun 2019 Lingkup LRMPHP

Loka Riset Mekanisasi Pengolahan Hasil Perikanan (LRMPHP)  menyelenggarakan Monitong dan Evaluasi (Monev) Semester II Tahun  2019 pada 12 Desember 2019. Kegiatan dihadiri oleh Dra. Hera Rusida, M.M., yang mewakili Kepala Pusat Riset Perikanan, Kepala LRMPHP, evaluator kegiatan riset serta seluruh pegawai LRMPHP.

Kepala LRMPHP, Assadad, M.Sc dalam sambutan pembukaannya menyampaikan pelaksanaan kegiatan LRMPHP Tahun  Anggaran 2019 baik kegiatan riset maupun  manajerial telah berjalan dengan baik. Kegiatan riset LRMPHP tahun 2019 tentang mekanisasi penanganan rumput laut dan kegiatan Inovasi Adaptif Lokasi Perikanan (INTAN). Riset penanganan rumput laut dibagi dalam 3 subjudul kegiatan yaitu rancang bangun alat grading rumput laut, rancang bangun silo rumput laut dan rancang bangun pengering rumput laut menggunakan microwave, kegiatan INTAN tentang aplikasi teknologi alat transportasi ikan segar (ALTIS-2).Kepala LRMPHP berharap masukan dan arahan dari para evaluator agar pelaksanaan kegiatan riset dapat diukur telah memenuhi standar kualitas ilmiah dan sesuai proposal yang diajukan dan ditetapkan pada awal tahun.

Monev Semester II Tahun 2019 LRMPHP dibuka oleh Dra. Hera Rusida, M.M., sekaligus memberikan arahan. Dalam arahannya, beliau menyampaikan arah kebijakan sektor kelautan dan perikanan KKP sesuai arahan presiden RI yang meliputi pembangunan SDM, pembangunan infrastruktur, pemerintah akan mengajak DPR menerbitkan 2 undang-undang besar yaitu UU Cipta Lapangan Kerja dan UU Pemberdayaan UMKM, penyederhanaan birokrasi serta transformasi ekonomi.

Dra. Hera Rusida, M.M.,juga menyampaikan arahan Menteri KP tentang program riset dan SDM serta rancangan penguatan sarana dan prasarananya. Materi lain yang disampaikan dalam arahannya yaitu arahan dari Kepala BRSDM terkait riset perikanan dan umum, gelar inovasi teknologi, pengembangan desa inovasi serta rencana aksi lingkup Pusriskan 2020-2024. Untuk menindaklanjuti arahan Menteri KP tersebut, Dra. Hera Rusida, M.M., meminta agar LRMPHP mempersiapkan SDM, sarana dan prasarana dalam rangka menjadikan LRMPHP Bantul sebagai pusat inovasi alat dan mesin perikanan.

Pembahasan monev kegiatan riset tahun 2019, diawali dengan pemaparan kegiatan Riset Rancang Bangun Alat Silo Rumput Laut oleh Putri Wullandari STP, M.Sc dengan evaluator Dr Ir Nursigit Bintoro, M.Sc dari  Fakultas Teknologi Pertanian UGM. Evaluator menyatakan pada dasarnya secara keseluruhan peralatan yang dihasilkan sudah bagus. Namun demikian perlunya perhitungan kembali untuk menetapkan suhu dan kelembaban agar kadar air rumput laut hasil pengujian sesuai dengan yang dikehendaki. Pada pemaparan kegiatan Riset Rancang Bangun Alat Grading Rumput Laut oleh I Made Susi Erawan, S.Pi, M.Sc dengan evaluator Dr. Rudiati Evi Masithoh, STP., M.Dev.Tech dari Fakultas Teknologi Pertanian UGM, menyampaikan kelebihan  identifikasi dan analisa yang berbasis pengolahan citra mata  dengan Convolutional Neural Networks (CNN). Sistem CNN ini diharapkan dapat diintegrasikan kepada alat pengayak yang akan digunakan untuk grading rumput laut. Pada pemaparan kegiatan riset Rancang Bangun Pengering Rumput Laut oleh Arif Rahman Hakim, S.Pi, M.Eng dengan evaluator Samsudin Anis, Ph.D dari Teknik Mesin Universitas Negeri Semarang (UNNES) menyampaikan bahwa pelaksanaan kegiatan riset telah sesuai target yang ditetapkan. Sebagai masukan perlunya memperbanyak pengujian dengan berbagai parameter pengujian.

Selanjutnya pada pemaparan kegiatan INTAN ALTIS-2 dengan evaluator Dra. Hera Rusida, M.M. selaku Plt. Kabid Riset Pemulihan SD &  Teknologi Alsinkan Pusriskan menjelaskan agar  LRMPHP menyuarakan isu transgender karena INTAN ALTIS-2 selain dapat digunakan oleh laki-laki, namun perempuan juga dapat menggunakannya. Beliau juga menyampaikan bahwa meskipun hasil monitoring dan evaluasi terhadap kinerja ALTIS-2 cukup memuaskan, namun ada beberapa keluhan terkait ketidakkenyamanan, untuk dapat ditindak lanjuti.

Kegiatan Monev Semester I Tahun  2019  lingkup LRMPHP diakhiri dengan pembahasan kegiatan manajerial oleh Evaluator dari Pusriskan dan Kepala LRMPHP. Tim evaluator menyampaikan apresiasinya atas hasil yang diperoleh dalam pelaksanaan kegiatan manajerial Tahun Anggaran 2019.

Pada Monev Tahun 2019, LRMPHP memberikan penghargaan kepada pegawai yang berprestasi tahun 2019. Penghargaan ini sesuai dengan arahan Kepala BRSDM. Ada 3 penghargaan yang diberikan berdasarkan kriteria Indeks Profesionalitas ASN, Indeks H-Publikasi maupun Kinerja Anggaran 2019. Untuk Indeks Profesionalitas ASN (per 2 Des 2019 diberikan kepada Yustinus Jati Utomo, Indeks H-Publikasi kepada Arif Rahman Hakim, sedangkan Kinerja Anggaran 2019 terbaik diberikan kepada INTAN ALTIS-2 untuk riset dan tata usaha untuk manajerial. Dengan adanya penghargaan ini, Kepala LRMPHP berharap dapat memacu semangat para pegawai untuk berkinerja yang lebih baik lagi kedepannya.





Penghargaan kepada pegawai berprestasi tahun 2019

Rabu, 11 Desember 2019

Produksi Tepung Ikan di Gunungkidul, Wonogiri dan Pacitan

Tepung ikan merupakan salah satu bentuk pemanfaatan hasil samping (limbah) pengolahan utama ikan maupun dari hasil tangkapan sampingan. Tepung ikan merupakan bahan baku utama pembuatan pakan ternak, baik pakan ternak ruminansia, ternak unggas maupun pelet ikan. Hal ini karena tepung ikan masih menjadi komponen utama sumber protein dalam formulasi pakan ternak. 

Permasalahan yang sering dihadapi adalah kualitas tepung ikan yang dihasilkan oleh pengolah skala kecil tidak seragam dan masih di bawah kualitas tepung impor. Hal ini karena pengolahan tepung ikan di dalam negeri umumnya dilakukan oleh industri rumah tangga dengan peralatan yang digunakan masih sangat sederhana. Selain itu sumber bahan baku tepung ikan yang digunakan selama ini umumnya berupa jenis-jenis ikan yang kurang ekonomis (ikan rucah), hasil tangkapan samping (HTS) dan sisa-sisa olahan ikan yang berasal dari limbah pengolahan ikan kaleng. Secara umum, kualitas tepung ikan yang diproduksi harus memenuhi Standar Nasional Indonesia, yaitu SNI Nomor 1715:2013. 

Salah satu penghasil tepung ikan skala terbatas berada di kabupaten Gunungkidul, Wonogiri dan Pacitan. Daerah tersebut menghasilkan tepung ikan dengan mutu yang beragam. Tepung ikan diproduksi oleh UKM dengan metode dan peralatan yang sederhana. Pengolahan tepung ikan di Gunungkidul dan Pacitan menggunakan metode perebusan dan juga melalui proses pengepresan, sedangkan pada pengolah di Wonogiri menggunakan metode pengukusan dan tidak melalui proses pengepresan. Metode dan bahan baku yang berbeda ini akan menyebabkan kualitas tepung ikan yang dihasilkan juga bervariasi. Hal ini sejalan dengan pernyataan Saleh, et al. (1986) dan Indriyanti, et al. (1990) yaitu pengolahan tepung ikan di dalam negeri umumnya dilakukan oleh industri rumah tangga dan industri pabrik yang keduanya memiliki perbedaan baik dalam teknik pengolahannya maupun sumber bahan baku yang digunakan sehingga menghasilkan kualitas tepung ikan yang bervariasi. 

Produk tepung ikan di kabupaten Gunungkidul dibedakan menjadi 3 jenis produk tepung ikan yaitu tepung mutu A, B, dan C yang dibedakan berdasarkan kualitas bahan baku awal. Produk tepung ikan di kabupaten Wonogiri hanya satu jenis tepung yaitu tepung ikan nila. Produk tepung ikan di kabupaten Pacitan dibedakan menjadi 3 jenis produk yaitu tepung daging tuna, tepung tulang tuna, tepung kepala tuna. Hasil uji laboratorium diperoleh komposisi kimia tepung ikan Gunungkidul, Wonogiri dan Pacitan ditunjukkan pada tabel 1.

Tabel 1. Komposisi kimia tepung ikan asal kabupaten Pacitan, Wonogiri dan Gunungkidul (%)
Keterangan:
*           Produk tepung ikan asal Pacitan
**          Produk tepung ikan asal Wonogiri
***        Produk tepung ikan asal Gunungkidul

Secara umum bahan baku dan metode yang digunakan oleh ketiga pengolah tepung ikan di kabupaten Gunungkidul, Pacitan dan Wonogiri bervariasi dan menyebabkan kualitas tepung ikan yang bervariasi. Sedangkan dilihat dari kualitasnya, mengacu pada standar SNI 2715:2013 dengan parameter uji kadar protein, kadar lemak, kadar abu dan kadar air, maka produk tepung ikan berbahan baku daging ikan di kabupaten Pacitan dengan metode perebusan yang memenuhi standar, sedangkan untuk produk tepung ikan lainnya tidak memenuhi standar.

Penulis : Wahyu Tri Handoyo, LRMPHP

Selasa, 10 Desember 2019

Chiller DIY (Do It Yourself) untuk Aquascape


Seringkali orang menyamakan antara  aquascape dan akuarium, padahal keduanya berbeda. Aquascape merupakan  seni yang mengatur tanaman, air, batu, karang, kayu dan lain sebagainya dalam kotak kaca atau acrylic yang menyerupai akuarium. Perbedaan aquascape dengan akuarium adalah fungsi ikan, yaitu sebagai unsur pelengkap pada aquascape dan sebagai unsur inti pada akuarium ikan hias, sedangkan tanaman air dan lainnya merupakan hiasan atau pelengkap saja.

Suhu air dalam aquascape memiliki peranan yang sangat penting karena berkaitan dengan difusi gas CO2. Semakin tinggi suhu air akan semakin rendah kelarutannya dan sebaliknya semakin rendah suhu air akan semakin tinggi kelarutannya. Semakin tinggi CO2 terlarut dalam air akan semakin baik untuk metabolisme tanaman air. Berkebalikan dengan ikan, semakin hangat suhu air ketahanannya akan semakin bagus, terutama terhadap penyakit tertentu. Oleh sebab itu, dalam aquascape, suhu harus dijaga agar optimal untuk tanaman air dan tidak membahayakan untuk kehidupan ikan yang melengkapinya.  Berikut adalah suhu optimal yang direkomendasikan untuk berbagai jenis aquascpae :

  • Aquascape aquarium dengan ikan kecil : 23-25°C
  • Aquascpace aquarium dengan ikan discus : 28°C
  • Aquascape murni tanpa ikan : 18-22°C
Suhu optimal tersebut sulit diperoleh terutama di kota-kota besar yang panas. Salah satu cara untuk menurunkan suhu air pada aquascape yaitu dengan mempergunakan chiller. Banyak sekali chiller aftermarket yang dijual di pasaran akan tetapi harganya cukup mahal. Untuk mensiasatinya, dapat dibuat chiller DIY (do it yourself) dengan alat yang bernama peltier. Alat ini berbentuk kotak pipih berwarna putih dan mempunyai mempunyai dua sisi yang dapat menghasilkan panas dan dingin jika dialiri arus listrik. Sisi dingin pada peltier ini dapat digunakan sebagai chiller untuk aquascape. Untuk membuatnya, bahan yang dibutuhkan adalah peltier TEC 12706, waterblock untuk peltier, pompa air DC, thermostat DC, switch power supply 12V 5-6A, selang dan heatsink fan untuk prosesor. Thermostat berfungsi untuk memutus arus ke peltier jika suhu yang dikehendaki sudah tercapai dan akan menyambungkan kembali jika suhu naik pada nilai tertentu. Pembuatan chiller DIY ini lebih hemat jika dibandingkan dengan membeli chiller aftermarket di pasaran, dan akan lebih hemat lagi jika memanfaatkan barang bekas dari dispenser bekas untuk mengambil peltiernya dan untuk switch power supply bisa memanfaatkan dari PC bekas. Diagram rangkaiannya adalah sebagai berikut :


Diagram rangkaian chiller

Penulis : IM. Al Wazzan, Peneliti LRMPHP





Senin, 09 Desember 2019

Penambahan Sargassum sp. sebagai Binder pada Pembuatan Soil Conditioner dari Limbah Padat Ekstraksi Gracilaria sp.

Saat ini rumput laut merupakan komoditas yang memiliki nilai ekonomis tinggi. Menurut Dahuri yang disampaikan dalam Samudra edisi 93 Januari 2011, dari keseluruhan produksi rumput laut di dunia, jenis yang langsung dapat dikonsumsi berjumlah sekitar 65%, jenis yang dijadikan sebagai bahan hidrokoloid berjumlah sekitar 15%, dan jenis yang dijadikan sebagai bahan pupuk berjumlah sekitar 20%.
Pengolahan agar dari Gracilaria sp menghasilkan limbah padat yang selama ini belum dimanfaatkan dengan baik. Rumput laut dan limbah olahannya dikenal sebagai bahan yang mempunyai kemampuan menyerap air yang tinggi, dapat mencapai 30 kali berat keringnya, kemudian dengan mengkombinasikannya dengan bahan lain yang mampu menyimpan air serta berperan sebagai binder seperti alginat, dapat diperoleh bahan yang sangat sesuai sebagai “soil conditioner” dengan kemampuan menyerap dan menahan air yang sangat baik.
Rumput laut kaya akan sumber poiisakarida sehingga dapat mempengaruhi agregasi (kesatuan) tanah baik secara langsung maupun tidak langsung setelah dekomposisi oleh mikroorganisme tanah.

Cara pembuatan soil conditioner yaitu dengan : (1) rumput laut Sargassum sp. ditambahkan dengan konsentrasi 20-30% dari total bahan lainnya, yaitu dalam bentuk hasil rebusan dalam air (rumput laut : air = 1 : 30) kemudian diblender menjadi bubur kental, (2) campurkan semua bahan (bubur rumput laut Sargassum sp., limbah rumput laut Gracilaria sp., CaCl2) kemudian digiling dan dicetak dengan alat pencetak, (3) produk “soil conditioner” yang berbentuk pellet kemudian dikeringkan di bawah sinar matahari sampai kadar airnya kurang dari 12%.

Penggunaan Sargassum sp. sebesar 20-30% sebagai binder menghasilkan kenampakan soil conditioner yang cukup baik seperti telihat pada Gambar 1.
Gambar 1, Kenampakan soil conditioner pada konsentrasi Sargassum sp. (a) 20%, (b) 30%

Penggunaan soil conditioner sebanyak 30% menunjukkan hasil yang cukup baik dalam membantu tanah mempertahankan kelembabannya dan mendukung pertumbuhan tanaman. Uji coba dalam menumbuhkan bibit caisim juga terlihat bahwa tanpa penambahan soil conditioner maka penyiraman benih harus dilakukan dua kali sehari agar kondisi tanah tetap lembab dan benih caisim dapat tumbuh. Sementara itu, dengan penambahan soil conditioner sebesar 10 – 30%, penyiraman dua hari sekali sudah cukup menyediakan kelembaban tanah bagi pertumbuhan benih caisim tersebut. Hasil uji coba terhadap tanaman tersebut disajikan pada Gambar 2.
 
Gambar 2. Benih Caisim yang ditumbuhkan pada media tanah berpasir dengan penambahan soil conditioner 10% dan 30%.
Penulis : Putri Wullandari, Peneliti LRMPHP 

Efektivitas Pemisahan Daging Ikan Lele Menggunakan Meat Bone Separator Komersial


Lele merupakan jenis ikan air tawar yang berasal dari Afrika. Jenis yang sudah dibudidayakan secara komersial di Indonesia yaitu lele dumbo (Clarias gariepinus) dan lele local (Clarias batrachus). Menurut Direktorat Produksi dan Usaha Budidaya dalam Buku Saku Budidaya Ikan Lele Sistem Bioflok Tahun 2017, budidaya lele mengalami perkembangan yang cukup pesat,  disebabkan oleh beberapa faktor yaitu budidaya lele dapat menggunakan lahan dan sumber air yang terbatas dengan padat tebar yang tinggi, teknologi budidaya relatif mudah dikuasai oleh masyarakat, memiliki pangsa pasar yang jelas, modal usaha yang dibutuhkan tidak terlalu besar, dan waktu usaha yang dibutuhkan tidak terlalu lama. Masyarakat cenderung mengkonsumsi ikan lele dalam bentuk segar, dengan mengolah lele menjadi fillet, daging lumat atau surimi diharapkan dapat meningkatkan nilai tambahnya.
Daging lumat lele diperoleh dengan memisahkan daging dengan tulang dan duri ikan lele. Salah satu peralatan yang dapat digunakan dalam proses pemisahan tersebut adalah meat bone separator (alat pemisah daging).  Secara umum alat pemisah daging ikan telah diproduksi dan beredar di pasaran. Selain itu mesin pemisah daging komersial memiliki kapasitas dan energi yang berbeda pula. Dalam penelitian, alat pemisah daging komersial yang digunakan berukuran 1525 mm x 980 mm x 1192 mm, dan spesifikasi mesin 3700 Watt (Gambar 1).

Gambar 1. Alat pemisah daging komersial

Dalam proses pengujian kinerja alat pemisah daging tersebut, lele diberi perlakuan pendahuluan terlebih dahulu dengan cara dibelah dua dalam bentuk butterfly dan bentuk sayat samping. Lele yang sudah dipreparasi selanjutnya dimasukkan ke dalam alat pemisah daging dengan cara memasukkan lele mulai dari bagian ekor, sedangkan untuk lele yang dibelah, arah daging menghadap ke bagian drum berpori. Posisi saat lele dimasukkan ke alat pemisah daging disajikan pada Gambar 2.

Gambar 2. Posisi saat lele dimasukkan ke alat pemisah daging
Hasil uji kinerja alat pemisah daging komersial menunjukkan bahwa alat lebih efektif untuk pemisahkan daging ikan dalam bentuk  butterfly dibanding disayat. Rendemen daging lumat lele dengan perlakuan belah/ butterfly lebih besar (39%) dibandingkan rendemen daging lumat lele dengan perlakuan sayat (37,83%). Hal ini disebabkan bagian permukaan daging lele dan kulit sebagai pembungkus daging lele telah terbuka, sehingga proses pemasukan daging saat penekanan oleh silinder berpori dan conveyor belt menjadi lebih mudah dibandingkan lele yang disayat.

Selain itu, waktu pengolahan daging lumat lele yang diberi perlakuan belah/ butterfly lebih cepat dibandingkan waktu pengolahan daging lumat lele yang diberi perlakuan sayat samping untuk jumlah bahan baku yang sama. Dengan demikian kapasitas pengolahan daging lumat lele yang diberi perlakuan belah/ butterfly (90,3 kg/jam) lebih besar dibandingkan kapasitas pengolahan daging lumat lele yang diberi perlakuan sayat samping (55,1 kg/jam). Hal ini disebabkan karena ukuran ketebalan ikan pada perlakuan belah lebih tipis dibandingkan perlakuan sayat, sehingga lebih mudah masuk ke dalam alat pemisah daging.

Penulis : Putri Wullandari, Peneliti LRMPHP

Minggu, 08 Desember 2019

Kunjungan Dinas Kelautan dan Perikanan Kab. Cirebon di LRMPHP

Kunjungan Dinas Kelautan dan Perikanan Kab. Cirebon di LRMPHP

LRMPHP menerima kunjungan Dinas Kelautan dan Perikanan (Dislakan) Kabupaten Cirebon pada 6 Desember 2019. Kunjungan dipimpin oleh Kepala Dislakan Kab. Cirebon,   Itta Rohpitasari, M.Si dan  diterima oleh Kepala LRMPHP, Luthfi Assadad, M.Sc. Kunjungan Dislakan ini  dalam rangka kunjungan kerja untuk melihat peralatan hasil riset LRMPHP dan teknologi Alat Transportasi Ikan Segar (ALTIS-2).

Dalam sambutannya, Kepala LRMPHP mengucapkan terima kasih atas dukungan serta kerjasamanya selama pelaksanaan program Inovasi Teknologi Adaptif Lokasi Perikanan (INTAN) ALTIS-2 di Kabupaten Cirebon. Senada dengan sambutan Kepala LRMPHP, Kepala Dislakan Kab. Cirebon mengapresiasi atas dipilihnya Kab. Cirebon sebagai tempat uji terap ALTIS-2. Kepala Dislakan menyampaikan bahwa pedagang ikan keliling yang menjadi mitra uji terap sudah terbantu dan mendapatkan manfaatnya. Selain itu, Kepala Dislakan juga menyampaikan maksud kunjungannya ini selain untuk melihat peralatan hasil inovasi LRMPHP juga untuk menginisiasi kerjasama lanjutan dengan LRMPHP. Kerjasama yang sudah terjalin saat ini tentang uji terap ALTIS-2 kepada pedagang ikan keliling di Kab. Cirebon. Harapannya akan ada lagi peralatan lainnya  yang diuji terap di Kab. Cirebon.

Selain paparan dari Kepala LRMPHP, Tri Nugroho Widianto, M.Si selaku Koordinator Pelayanan Teknis sekaligus Koordinator Riset ALTIS-2 juga memaparkan hasil uji terap ALTIS-2 yang telah dilakukan di Kab. Cirebon. Disampaikan bahwa secara umum uji terap ALTIS-2 di Kabupaten Cirebon berjalan dengan baik. Pelaku uji terap lebih banyak mendapat manfaatnya, diantaranya penampilan ALTIS-2 yang bersih menjadi daya tarik pembeli, penggunaan es batu berkurang, ikan yang dijual tetap segar serta banyak mendapat tanggapan positip dari para pembeli. Salah satu tindak lanjut untuk perbaikan dan penyempurnaan ALTIS-2, perlunya pendampingan lanjutan dan kerjasama dari Dislakan Kab. Cirebon.

Kunjungan Dislakan Kab. Cirebon Dislakan  diakhiri dengan melihat peralatan hasil riset LRMPHP di ruang display peralatan, workshop dan bengkel konstruksi serta fasilitas pendukungnya. Selama kunjungan dilakukan pemaparan mengenai fungsi dan mekanisme kerja beberapa peralatan hasil rancang bangun LRMPHP diantaranya peralatan  alat uji kesegaran ikan berbasis sensor (alat UKI),  alat transportasi ikan segar roda dua (ALTIS-2), alat pengisi adonan tahu tuna (ALPINDAL), meat bone separator dan  peralatan lainnya.



Kunjungan di ruang display peralatan, workshop dan bengkel konstruksi

Jumat, 06 Desember 2019

Teknologi Pendinginan Berbasis Energi Sinar Matahari

Saat ini banyak negara termasuk Indonesia menghadapi permasalahan sistem pendinginan. Sistem pendingin konvensional dengan freon terbukti menjadi salah satu penyebab pemanasan global. Oleh karena itu perlu dikembangkan teknologi untuk memanfaatkan solar energi sebagai sumber energi dalam sistem pendingin (Solar refrigerator). Dalam sistem ini freon akan digantikan bahan lain seperti Lithium chloride, Lithium bromide maupun air. 

Pemanfaatan sinar matahari sebagai sumber energi terbagi menjadi 2 metode yaitu pertama Photovoltaic System (PVC), kedua Solar Thermal System (STh). Pada PVC energi matahari dikonversi menjadi energi listrik kemudian dimanfaatkan untuk sistem refrigerasi pada umumnya. Teknologi ini sering disebut Photovoltaic Cooling System. Sedangkan pada STh sinar secara langsung memanaskan refrigerant melalui tabung kolektor sebagai pengganti energi listrik. Teknologi ini dikenal sebagai Solar Thermal Cooling System

Photovoltaic cooling (PVC) 
Sel PVC berbahan dasar solid-state semikonduktor yang mampu mengubah sinar matahari menjadi suatu energi. PVC ini output nya berupa listrik arus DC (direct current) sehingga tidak bisa langsung digunakan untuk peralatan dengan sumber listrik AC (alternating current). Oleh karena itu komponen utama PVC adalah modul photovoltaic, battery, sirkuit inverter dan unit pendingin kompresi uap. Skema PVC ditampilkan pada Gambar 1.

Gambar 1. Skema system photovoltaic cooling
Komponen utama PVC antara lain a) PV modul : untuk menangkap sinar matahri kemudian merubahnya menjadi listrik DC. b) Battery : digunakan untuk menyimpan tegangan DC hasil dari PV modul. Terdapat mode charging saat siang hari, dan mode discharging saat malam atau cuaca mendung. Battery juga harus dilengkapi charge regulator untuk melindungi battery dari overcharging. c) Inverter : berfungsi untuk merubah arus listrik DC menjadi AC d) Pendingin : alat pendingin kompresi uap AC.

PVC dapat dioperasikan sebagai standalone, hybrid maupun grid system. Meskipun efesiensi PVC bisa ditingkatkan dengan penggunaan inverter, namun COP sistem ini masih rendah.

Solar thermal cooling (STh)
Banyak penelitian menyebutkan bahwa STh lebih unggul dibandingkan PVC, karena STh mampu mengkonversi sinar matahari lebih banyak. Energi sinar matahari yang diterima sistem, 65% akan dirubah menjadi energi panas dan hanya 35% dirubah menjadi energi listrik. Oleh karena itu STh lebih populer sebagai thermal solar collector karena mampu mengkonversi sinar matahari menjadi panas. STh terdiri dari 4 komponen utama yaitu rangkaian solar collector, tangki penyimpan panas, unit AC thermal dan heat exchanger. Solar collector menerima energi cahaya dari matahari dan menaikan suhu, hasilnya refrigerant dalam tabung kolektor menjadi panas akibat proses perpindahan
panas. Tangki penyimpan panas digunakan untuk menyimpan refrigerant panas dari tabung kolektor. Thermal AC unit mulai bekerja setelah menerima refrigerant panas dari tabung penyimpan panas dan selanjutnya refrigerant terus bergerak dalam sistem. Heat exchanger berfungsi transfer panas antara ruang panas dan dingin. Sistem STh bisa dilihat pada Gambar 2.

Gambar 2. Sistem solar thermal cooling
Meskipun PVC dapat menyediakan energi listrik untuk pendinginan, namun STh lebih efisien. STh telah digunakan oleh industri dan rumah tangga diseluruh dunia. Sistem ini lebih aplikatif, di daerah terpencil atau pulau dimana pendingin konvensional tidak tersedia. Sistem ini juga lebih sesuai dari pada sistem refrigerasi konvensional karena bebas dari polusi refrigerant seperti CFC.

Penulis: Arif Rahman Hakim, Peneliti LRMPHP

Kamis, 05 Desember 2019

Submersible fish cage, KJA yang tenggelam

Ditengah imbas aturan larangan transshipment di tengah laut, marikultur tetap menjadi bisnis perikanan yang menggiurkan. Permintaan ekspor yang tinggi dan kebutuhan dalam negeri yang belum terpenuhi merangsang banyak korporasi untuk menginvetasikan dananya pada bisnis ini. Agar investasi yang dilakukan tidak mengalami kerugian, kesesuaian konstruksi KJA dengan karakteristik perairan mutlak diperhatikan. Konstruksi tersebut harus mampu menahan gelombang tinggi dan angin kencang yang biasa terjadi saat cuaca buruk.

Model konstruksi KJA yang saat ini trending adalah submersible fish cage yaitu KJA yang dapat terapung dan tenggelam. Pada cuaca normal, KJA akan terapung seperti biasa dan apabila kondisi cuaca memburuk KJA akan ditenggelamkan sehingga tidak terlalu terpengaruh oleh gelombang tinggi. Konstruksi utama submersible fish cage terdiri dari rangka yang terbuat pipa HDPE yang sekaligus berfungsi sebagai pelampung, jaring, pemberat yang dilengkapi dengan kantong udara, tali yang menghubungkan unit KJA dengan pemberat dan jangkar. Kantong udara digunakan untuk menaikturunkan pemberat. Unit KJA akan naik saat kantong udara dikembungkan dan akan turun ke bawah permukaan air saat kantong udara dikempiskan. Kantong udara dikembang-kempiskan melalui suatu saluran udara yang terhubung dengan lubang yang selalu berada dipermukaan air. Salah satu model KJA submersible ini telah dipublikasikan oleh Drach et al. pada V International Conference on Computational Methods in Marine Engineering di Spanyol. Cara kerja KJA tersebut diilustrasikan pada gambar dibawah ini.

Sumber gambar : https://www.researchgate.net/pulication/267759151

Penulis : Iwan Malhani, Peneliti LRMPHP

Pengolahan Pindang Tradisional di Indonesia

Pemindangan ikan merupakan salah satu teknik pengolahan dan pengawetan ikan dengan cara kombinasi perebusan/pemasakan dan penggaraman selama jangka waktu tertentu dalam suatu wadahJenis ikan yang biasa dipindang adalah kembung, tongkol, cakalang, bandeng, bawal, layang, layur, cucut, selar, tanjan, lemuru, kuwe, teri jengki dan teri nasi.

Salah satu sentra produksi ikan tongkol terdapat di Pelabuhan Ratu, Sukabumi. Mumpuni dan Hasibuan (2018) dalam JPHPI 2018, Volume 21 Nomor 3 melaporkan bahwa UMKM pengolahan ikan pindang tongkol di Pelabuhan Ratu, Sukabumi belum menerapkan prinsip Good Manufacturing Practices (GMP) dengan baik. Hasil penelitian memperlihatkan bahwa semua sampel yang diambil dari pengolah pindang tongkol daerah Pelabuhan Ratu, Sukabumi, mengandung mikroba dengan prevalensi TPC adalah 90%, kapang adalah 100% dan E. coli adalah 10%, sedangkan Salmonella 70%. Proses produksi dilakukan secara tradisional, yaitu : bahan baku disortir, dibersihkan, kemudian ditambahkan garam, selanjutnya dimasukkan ke dalam wadah dan direbus selama sekitar 2 jam. Larutan garam untuk perebusan dapat digunakan berulang-ulang, namun larutan perebus ini makin lama makin keruh, berwarna gelap, kotor, kental dan agak tengik. Jika larutan perebus yang demikian masih digunakan, ikan pindang yang dihasilkan bermutu rendah.

Untuk mengatasi hal tersebut, seharusnya larutan perebus diganti 2 kali sehari atau tergantung frekuensi penggunaannya. Penggunaan 3-5 kali perebusan masih memungkinkan asal dibersihkan dulu dan kejenuhan garamnya dipertahankanUpaya lainnya yang dapat dilakukan untuk mengurangi pencemaran mikroba antara lain dengan menggunaka air yang bersih, melakukan sanitasi terhadap ruangan dan peralatan yang digunakan, serta dengan memperhatikan kebersihan personilnya.

Handayani, et al. (2017) memaparkan dalam Pro Food (Jurnal Ilmu dan Teknologi Pangan) vol. 3 no. 1 bahwa pengolahan pindang tradisional juga dilakukan oleh nelayan di beberapa daerah di Indonesia. Nelayan di pesisir pantai Ampenan melakukan proses pemindangan tongkol ±10 kg selama 1-2,5 jam, sedangkan nelayan di Batu Putih, Sekotong, Lombok Barat melakukan pemindangan tongkol dalam waktu 1,5 jam untuk 5 kg ikan tongkol segar.

Pengolahan pindang tradisional lainnya banyak dijumpai di Waduk Malahayu, Brebes seperti dipublikasikan pada Prosiding Seminar Nasional Masyarakat Pengolahan Hasil Perikanan (2012). Waduk Malahayu yang memiliki luas sekitar 944 hektar berada di Desa Malahayu, Kecamatan Banjarharjo, Kabupaten Brebes, Jawa Tengah. Proses pengolahan pindang tradisional di Waduk Malahayu umumnya dilakukan dengan cara berikut ini :
Proses pengolahan pindang tradisional di Waduk Malahayu
Pengolah pindang tradisional di sekitar Waduk Malahayu menggunakan ikan mas/ nila/ gabus yang dibeli di Tempat Pelalangan Ikan (TPI) sederhana di Waduk Malahayu kemudian langsung diolah menjadi ikan pindang. Teknik pengolahan pindang di Waduk Malahayu termasuk ke dalam teknik pemindangan garam. Pemindangan garam adalah cara pemindangan dimana lapisan ikan yang telah digarami disusun berlapis-lapis di dalam wadah yang terbuat dari pelat logam (badeng) pendil/ paso tanah, dan direbus pada suhu 80°C dalam jangka waktu 4-6 jam. Wadah perebus langsung digunakan sebagai wadah untuk distribusi dan penjualanGaram yang digunakan yaitu garam krosok (garam curah), karena harganya lebih murah dibandingkan dengan garam produksi industri.

Ikan pindang dijual ke konsumen dengan dibungkus daun pisang dan dilapisi kertas minyak sehingga harus segera habis dikonsumsi dalam satu hari. Jika tidak segera dikonsumsi harus dipanaskan kembali untuk menjaga mutu keamanan pangannya. Perbaikan yang dapat dilakukan yaitu dengan menggunakan kemasan plastik yang ditutup dengan sealer atau kemasan vakum untuk ikan pindang.

Penulis : Putri Wulandari, Peneliti LRMPHP