PELATIHAN

LRMPHP telah banyak melakukan pelatihan mekanisasi perikanan di stakeholder diantaranya yaitu Kelompok Pengolah dan Pemasar (POKLAHSAR), Kelompok Pembudidaya Ikan, Pemerintah Daerah/Dinas Terkait, Sekolah Tinggi/ Universitas Terkait, Swasta yang memerlukan kegiatan CSR, Masyarakat umum, dan Sekolah Menengah/SMK

Loka Riset Mekanisasi Pengolahan Hasil Perikanan

LRMPHP sebagai UPT Badan Riset dan SDM KP melaksanakan riset mekanisasi pengolahan hasil perikanan berdasarkan Peraturan Menteri Kelautan dan Perikanan nomor 81/2020

Tugas Pokok dan Fungsi

Melakukan tugas penelitian dan pengembangan strategis bidang mekanisasi proses hasil perikanan di bidang uji coba dan peningkatan skala teknologi pengolahan, serta rancang bangun alat dan mesin untuk peningkatan efisiensi penanganan dan pengolahan hasil perikanan

Kerjasama

Bahu membahu untuk kemajuan dan kesejahteraan masyarakat kelautan dan perikanan dengan berlandaskan Ekonomi Biru

Sumber Daya Manusia

LRMPHP saat ini didukung oleh Sumber Daya Manusia sebanyak 20 orang dengan latar belakang sains dan engineering.

Rabu, 22 Desember 2021

PENGERINGAN PAKAN IKAN DENGAN PENGERING ROTARY DRIER

Ketersediaan pakan dalam jumlah dan kualitas yang memadai mutlak dibutuhkan untuk keberhasilan suatu usaha ataupun penelitian budidaya perikanan. Pemberian pakan berbentuk pellet adalah pilihan yang baik, karena pada pakan pellet didalamnya telah terkandung bemacam-macam bahan pakan dalam kondisi homogen. Namun karena bersifat porous dan bila kadar airnya tinggi teksturnya menjadi tidak padat sehingga mudah rusak, hancur ataupun mudah berjamur. Agar tidak mudah hancur atau berjamur serta memperpanjang umur simpan maka kadar air pellet harus kurang dari 15%. Untuk menurunkan kadar air dapat dilakukan dengan cara pengeringan. Pengeringan yang paling murah menggunakan sinar matahari (dijemur), tetapi bila tidak memungkinkan (cuaca hujan) bisa juga menggunakan alat mesin pengering. Kadar air yang diperlukan dalam pakan ikan adalah antara 10-12 % (SNI 7674:2013) dan SNI 7768:2103 yaitu kurang dari 12%. 

Alternatif pengeringan antara lain diujicobakan oleh LRMPHP tahun 2020 yang dimuat dalam Prosiding Seminar Nasional Perikanan UGM Tahun 2020. Ujicoba mesin pengering rotary drier dilakukan untuk mengeringkan pakan ikan terapung setelah pencetakan ekstruder. Bahan yang digunakan adalah pakan ikan terapung setelah proses pencetakan ekstruder sejumlah 1485 gram seperti pada Gambar 1. Mesin rotary drier yang digunakan (Gambar 1) memiliki panjang 210 mm, diameter 305 mm, pemanas spesifikasi 900 watt dan dilengkapi dengan kipas 0,5 A dengan flow 244 CMM atau kecepatan 14,7 km/jam. Mesin dilengkapi juga hopper input, hopper output dan motor listrik 1 HP yang diatur pada putaran 29 rpm.

Gambar 1. Bahan pakan ikan yang dikeringkan dan rotary drier

Hasil pengujian pengeringan pakan ikan terapung dengan mesin rotary drier terutama berupa parameter waktu pengeringan, rendemen, kadar air pakan ikan dan daya listrik yang dibutuhkan. Rendemen yang dihasilkan total 5,3%. Rendemen ini terdiri dari pakan yang tersisa di rotary drier dan sebagian jatuh. Angka rendemen masih cukup tinggi sehingga dapat dilakukan perbaikan antara lain dengan mengatur kemiringan silinder sehingga pakan ikan dapat keluar dengan lebih mudah dari silinder rotary drier. Hasil lain yaitu suhu ruang pengering juga cukup rendah antara 35,9 - 38,3 °C sehingga relatif aman. Kadar air berkurang dari 13,582% menjadi 11,383 % setelah 6 siklus seperti pada Gambar 2. Mesin rotary drier LRMPHP ini dapat mengurangi kadar air pakan yang cukup baik yaitu sebesar 2,469%. 

Adapun kebutuhan arus dan daya listrik masing-masing 6,3 A dan 1421,03 watt. Hasil pengujian juga menunjukkan bahwa waktu yang diperlukan untuk total 6 siklus adalah 19 menit 21 detik yang mana relatif cukup cepat. Dengan hasil-hasil tersebut dan bila dibandingkan dengan penelitian-penelitian lainnya, pengeringan dengan rotary drier ini masih dapat dipertimbangkan sebagai alternatif/tambahan pengeringan pakan ikan terapung.

Gambar 2. Kadar air pakan ikan pada pengujian pengeringan dengan rotary drier


 Penulis : Ahmat Fauzi - LRMPHP


Selasa, 21 Desember 2021

Maggot, Alternatif Sumber Protein untuk Pakan Ikan

Sumber : Chia et al dalam PLOS ONE https://doi.org/10.1371/journal.pone.0206097

Permasalahan pakan ikan merupakan masalah yang selalu dialami para pembudidaya ikan. Hal ini disebabkan karena harga pakan di pasaran yang mahal karena bahan baku pembuatan pakan masih impor. Menanggapi hal tersebut, pemerintah sebenarnya sudah turun tangan dengan terus mencari cara supaya bisa menghasilkan pakan ikan yang berkualitas dengan harga yang terjangkau. Salah satu cara yang ditempuh adalah memanfaatkan bahan baku pakan ikan alternatif yang bisa ditemukan di Indonesia sebagai pengganti tepung ikan yang sebagian besar masih impor.

Maggot merupakan salah satu bahan baku alternatif yang cukup potensial. Hal ini karena maggot memiliki kandungan protein yang tinggi, harganya murah dan mudah diadopsi pengembangannya. Selain itu keunggulan lainnya adalah maggot bisa diproduksi dalam waktu singkat dengan jumlah yang diperkirakan cukup untuk memenuhi kebutuhan pakan ikan.

Menurut Cickova et al (2015) dalam Amandanisa & Suryadharma, 2020 yang dimuat dalam Jurnal Pusat Inovasi Masyarakat menyampaikan bahwa maggot dengan nama latin Hermetia illucens merupakan organisme yang berasal dari lalat Black Soldier Fly (BSF). Maggot dihasilkan pada metamorfosis fase kedua setelah fase telur dan sebelum fase pupa yang nantinya akan menjadi BSF dewasa. Lalat BSF bukan merupakan vector penyakit. BSF berasal dari Amerika dan selanjutnya tersebar ke wilayah subtropis dan tropis di dunia.

Maggot dapat dibudidayakan dengan memanfaatkan sampah organik yang ada di lingkungan kita. Sampah organic akan terdegradasi dan dapat digunakan sebagai pupuk, sedangkan maggot dapat dimanfaatkan sebagai sumber protein pakan ikan dan ternak. Berdasarkan informasi dari Widiarti (2012) yang dimuat dalam Jurnal Sains dan Teknologi Lingkungan dan juga dalam Agroinovasi - Badan Litbang Pertanian (2011) bahwa sampah organik dari sampah rumah tangga proporsinya dapat mencapai kisaran 70%. Jumlah sampah organic yang cukup besar tersebut sangat potensial dimanfaatkan sebagai media budidaya maggot. Bahkan mungkin setiap kampong bisa melakukan pengumpulan sampah organic yang dapat dimanfaatkan sebagai media maggot. Maggot yang dihasilkan bisa dimanfaatkan untuk pakan sumber protein pakan dan hasil degradasi sampah digunakan untuk pupuk.

Sudah banyak penelitian yang menunjukkan bahwa maggot potensial sebagai pengganti protein pakan ikan. Berdasarkan informasi dari Elwert et al (2010) dalam In: Tagung Schweine-und Gefugelernahrung, menyampaikan bahwa maggot (Hermetia illucens) memiliki potensi besar untuk substitusi tepung ikan karena kandungan protein yang cukup tinggi (30 – 50 %). Sedangkan menurut Fahmi et al (2009) yang dimuat dalam J. Ris. Akuakultur menyatakan bahwa kandungan protein maggot ukuran kecil (10-15 mm) mencapai 60,2 %, dan maggot ukuran besar (20-25 mm) kandungan proteinnya 32,3%.

Pada penelitian uji coba pertumbuhan ikan yang dilakukan oleh Fahmi et al. (2009) dalam J. Ris. Akuakultur, menyampaikan bahwa pada uji coba pertumbuhan ikan, pemanfaatan maggot sebagai suplemen pakan ikan memberikan pengaruh yang signifikan terhadap pertumbuhan ikan Balashark. Dampak penggunaan maggot juga terlihat pada peningkatan status kesehatan ikan. Penelitian yang hampir sama dilakukan oleh Priyadi et al (2009) yang disampaikan dalam J. Ris. Akuakultur juga menyatakan bahwa substitusi maggot sebagai sumber protein pengganti tepung ikan sangat potensial. Dari hasil penelitian yang dilakukan direkomendasikan bahwa substitusi maggot sebagai sumber protein pengganti tepung ikan tidak lebih dari 16,47%.

Bahkan berdasarkan informasi yang diperoleh dari Mongabay 2020, menyatakan bahwa Kementerian Kelautan dan Perikanan fokus untuk menjadikan Maggot sebagai bahan baku alternatif unggulan untuk pembuatan pakan ikan, dan sudah menggandeng beberapa perusahaan yang tertarik untuk melaksanakan produksi Maggot.

Penulis : Wahyu Tri H. - LRMPHP

Alga, Alternatif Sumber Energi Terbarukan Yang Belum Tergarap

Perubahan iklim semakin hari kian mengkhawatirkan. Peningkatan tinggi permukaan air laut menyebabkan abrasi di banyak garis pantai di dunia, bahkan daerah pesisir yang dulu tidak pernah terkena banjir rob air laut saat ini mulai terkena. Berbagai penelitian juga menyebutkan bahwa suhu bumi semakin meningkat akibat efek rumah kaca hasil dari pencemaran udara. Hal ini membuat es abadi di kutub utara dan selatan mencair dan makin menambah ketinggian air laut. Jika hal ini tidak diatas maka bumi akan mengalami kerusakan ekosistem yang masif yang dapat mengganggu kehidupan biota didalamnya termasuk manusia. Salah satu hal yang dituding sebagai biang kerok terhadap perubahan iklim ini adalah masifnya penggunaan bahan bakar fosil. Bahan bakar fosil adalah sumber energi tidak terbarukan dan tidak berkelanjutan yang digunakan sebagai bahan bakar motor untuk berbagai tujuan seperti transportasi, pembangkit listrik, dan pertanian. 

Kebutuhan bahan bakar fosil untuk transportasi darat di masa depan sudah hampir dapat dipastikan berkurang karena masifnya pengembangan electric vehicle (EV). Diawali dengan pengembangan mobil listrik Tesla yang begitu fenomelal seolah menjadi starting point pengembangan electric vehicle bagi perusahaan otomotif besar lain seperti Hyundai, Nissan bahkan Xiaomi yang selama ini bergerak dibidang teknologi mobile ikut meramaikan pengembangan kendaraan listrik. akan tetapi, listrik yang digunakan untuk menggerakan kendaraan-kendaraan tersebut bukan merupakan energi independen yang artinya baterai yang digunakan pada kendaraan tersebut harus tetap dicharge ataupun disuplai oleh pembangkit listrik. Pada mobil elektrik murni maka baterai harus diisi kembali setelah menempuh perjalanan sekian kilometer dan pada kendaraan hybrid ada yang menggunakan mesin berbahan bakar fosil sebagai pembangkit listrik untuk mengisi baterai yang dimilikinya. Energi listrik yang dihasilkan oleh pembangkit ini sebagian dihasilkan dari alam dan sebagian besar masih dihasilkan dari pembangkit listrik berbahan bakar fosil. Artinya, meskipun kebutuhan akan bahan bakar fosil untuk transportasi darat berkurang akan tetapi kebutuhan untuk pembangkit listrik bisa jadi meningkat. Kebutuhan bahan bakar fosil untuk transportasi udara dan laut masih tetap tinggi karena pengembangan ke arah kendaraan elektrik belum begitu berkembang. Penggunaan bahan bakar fosil yang tinggi dihadapkan pada permasalahan menipisnya cadangan bahan bakar fosil yang ada dan dunia ditantang untuk mencari bahan bakar alternatif. 

Salah satu energi alternatif yang sudah dikembangkan adalah biodiesel. Secara global, biodiesel sebagian besar diproduksi dari minyak sawit (31%), kedelai (27%), minyak lobak (20%), dan minyak goreng bekas (10%). Di Uni Eropa, biodiesel dihasilkan dari minyak lobak (44%), minyak sawit (29%), minyak goreng bekas (15%), dan minyak kedelai (5%) dan sisanya berasal dari bunga matahari, kelapa, kacang tanah, rami, jarak pagar, jagung dan alga.

Dalam tulisan berjudul The Perspective of Large-Scale Production of Algae Biodiesel yang dipublikasikan pada 2020, Bosnjakovic dan Sinaga menyatakan bahwa penggunaan alga sebagai bahan baku produksi biodiesel memiliki hasil yang lebih tinggi dibandingkan dengan tanaman darat sebagai bahan bakunya. Beberapa spesies alga sperti Schizochytrium sp., Nitzschia sp., dan Botyococcus braunii mengandung lebih dari 50% minyak dalam biomassanya dan dapat diekstrak dan diproses menjadi babahn bakar. Beberapa bahan bakar yang dapat diproduksi dari alga diantaranya bioetanol, biodiesel, metana, kerosen, biobutanol, biogas dan biodiesel ramah lingkungan. 

Flow chart proses pembuatan biodiesel dari alga

Proses pembuatan biofuel dari alga diawali dengan penumbuhan dan produksi alga. Hal yang perlu diperhatikan dalam tahap ini adalah kecukupan nutrient, CO2 dan sinar matahari. Seperti tanaman pada umumnya, alga membutuhkan sinar matahari dan CO2 untuk melakukan fotosintesis dan nutrien untuk pertumbuhannya. Tahap berikutnya adalah seleksi dan pemanenan. Seleksi dilakukan untuk memilah alga yang memiliki kandungan biofuel yang tinggi dalam biomassanya. Setelah dilakukan pemanenan, alga kemudian dikeringkan dan lemak diekstrak dengan cara merusak sel secara kimiawi maupun mekanis. Tahap selanjutnya adalah memisahkan lemak dengan asam lemak untuk diproses menjadi biodiesel. 


Penulis : Iwan Malhani Al Wazzan - LRMPHP



Senin, 20 Desember 2021

Pengawasan Otomatis Mutu Daging Ikan Menggunakan Machine Vision

Karena sifat daging ikan yang cepat mengalami kebusukan oleh proses biokimiawi maupun aktifitas bakteri, dalam industri perikanan selalu dibutuhkan pengawasan yang ketat terhadap mutu ikan sepanjang proses produksi, contohnya adalah yang berlangsung pada industri tuna dan salmon segar.

Pengujian mutu produk tersebut biasanya merupakan pekerjaan yang terus menerus atau berulang-ulang dan sifatnya sangat subjektif ditentukan oleh seorang ahli atau pengawas mutu terlatih. Seorang ahli mutu biasanya menentukan kualitas produk ikan segar melalui panca inderanya, dengan cara dilihat, dicium atau dirasa. Oleh karenanya, kualitas mutu ikan segar menjadi sangat subjektif karena dipengaruhi oleh kemampuan pengawas mutu, dan juga dipengaruhi faktor lainnya seperti kelelahan, dan kesalahan manusia.

Mutu ikan segar sebenarnya berhubungan erat dengan warna dan penampakan dagingnya. Hal ini menjadikan peluang untuk pemanfaatan aplikasi machine vision dalam industri produk ikan segar, yaitu untuk mendapatkan hasil penilaian kualitas produk yang lebih cepat dan lebih objektif. Aplikasi serupa sebenarnya juga telah dikembangkan pada produk-produk daging sapi atau unggas, seperti yang dilakukan oleh Garavand dkk. (2019) dalam menentukan kualitas daging ayam potong beku, yaitu menggunakan informasi perubahan warna produk yang disimpan selama 13 hari. Informasi warna daging ayam yang diambil sebagai dataset oleh Garavand dkk. yaitu rentang warna red, green, blue (RGB) dan L*A*B*. Kemudian untuk produk ikan segar, Garavand (2019) dkk. juga melakukan hal yang sama untuk menentukan kesegaran ikan mas selama penyimpanan dingin. Sedangkan Lugatiman dkk. (2019) melakukannya untuk menentukan kesegaran ikan tuna ekor kuning.

Informasi warna daging ikan yang diperoleh melalui kamera selanjutnya akan dibaca oleh mesin komputer sebagai bentuk angka-angka. Setelah informasi warna didapatkan melalui proses akuisisi gambar, biasanya dilanjutkan dengan proses pengkelasan (clustering) informasi warna tersebut, misalkan menjadi kelas “segar”, “kurang segar” dan “tidak segar” dengan menggunakan algoritma seperti  support vector machine (SVM), K-nearest neighbor (KNN) atau artificial neural network (ANN).

Contoh hasil ekstraksi fitur warna daging ikan (a) salmon dan (b) tuna (sumber: Medeiros dkk., 2021)

Semakin banyak dataset gambar daging ikan yang dilatihkan menggunakan algoritma machine learning (ML) maka semakin baik atau akurat model yang dihasilkan. Model dari hasil pelatihan dataset inilah yang kemudian diinstal atau di deploy pada mesin atau komputer untuk menentukan mutu daging ikan pada proses produksi. 

Ilustrasi inspeksi kualitas daging ikan menggunakan machine vision (sumber: www.toptal.com)

Dengan menggunakan teknologi machine vision, maka inspeksi mutu produk ikan yang dihasilkan oleh industri menjadi lebih terjamin dan lebih seragam karena pengawasan dilakukan secara objektif serta meminimalkan kekeliruan akibat kesalahan manusia.


Penulis: Bakti Berlyanto Sedayu - LRMPHP